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EXPLORATORY MULTIVARIABLE ANALYSES 

PREFACE 

This report is issued as an internal monograph of the California Department of Motor 
Vehicles’ Research and Development Branch rather than an official report of the 
State of California.  The opinions, findings, and conclusions expressed in the report are 
those of the author and not necessarily those of the State of California. 
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EXECUTIVE SUMMARY 

Background and Objectives 
• Since 1964, the California Department of Motor Vehicles has issued a number of 

monographs on driver characteristics and accident risk factors as part of a series 
of analyses known as the California Driver Record Study. 

• Past California Driver Record Study analyses, and many other studies conducted 
by the California Department of Motor Vehicles, have utilized standard 
parametric techniques such as analysis of variance, analysis of covariance, and 
ordinary least squares multiple regression models in analyzing the relationship 
between a variety of independent variables and subsequent accident rates. The 
justification for using these techniques is based on the operation of the central 
limit theorem in producing approximate normality of the test statistic when 
sample size is extremely large. 

• This paper presents the results of a number of regression analyses of driving 
record variables measured over a 6-year time period (1986-91).  The techniques 
presented consist of ordinary least squares, weighted least squares, Poisson, 
negative binomial, linear probability, and logistic regression models. The objective 
of the analyses was to compare the results obtained from several different 
regression techniques under consideration for use in the 1996 California Driver 
Record Study, which is currently in progress. 

• The results are informative in determining whether the various regression 
methods produce similar results for different sample sizes and to explore whether 
reliance on ordinary least squares techniques in past California Driver Record 
Study analyses have produced biased significance levels and parameter 
estimates. 
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EXPLORATORY MULTIVARIABLE ANALYSES 

Research Methods 
• Data for the analyses were obtained from the driving records of a 1% random 

sample of licensed California drivers extracted in 1992 from the California Driver 
Record Study database. 

• For each subject, information was collected on driver (a) age; (b) gender; 
(c) presence of a physical or mental condition code on record; (d) presence of 
license restrictions on record; (e) number of total citations occurring during 1986-
88; and (f) number of total accidents occurring during 1986-88. 

• Ordinary least squares, weighted least squares, Poisson, negative binomial, linear 
probability, and logistic regression were used to identify which combination of 
variables in the pool provided the most accurate equation for predicting the 
accident criterion measure. 

• Analyses are presented for two types of models:  (1) those using frequency data, 
where the dependent (criterion) variable represents the actual number of accident 
involvements, from 0 to K accidents, and (2) those using categorical data, where 
the accident criterion measure is a binary variable (equal to 0 if no accidents and 1 
if one or more accidents). 

Results 
• The results of the analyses are consistent with those of prior traffic safety 

research, with all of the models indicating that increased accident involvement 
was associated with the following: 
– Increased prior citation frequency 
– Increased prior accident frequency 
– Possessing a commercial driver license 
– Being young 
– Being male 
– Having a medical condition on record 
– Having a driver license restriction on record 

• The use of different regression techniques do not lead to any greater increase in 
individual accident prediction beyond that obtained through application of ordinary 
least squares regression. 

• Any generalization about driving performance from the present analyses is limited 
by the absence of exposure data (e.g., miles driven) and territorial data (e.g., driver 
record information by ZIP Code and U.S. census variables). 

Recommendations 
• The results indicate that, for these data, the use of the different regression 

techniques do not lead to any greater increase in individual accident prediction 
beyond that obtained through application of ordinary least squares regression.  In 
addition, the methods produce almost identical results in terms of the relative 
importance and statistical significance of the independent variables. 

• It therefore appears safe to employ ordinary least squares multiple regression 
techniques on driver accident-count distributions of the type represented by 
California driver records, at least when the sample sizes are large. 

ii 



EXPLORATORY MULTIVARIABLE ANALYSES 

TABLE OF CONTENTS 

PAGE 
PREFACE ............................................................................................................................ i 

ACKNOWLEDGMENTS .................................................................................................. i 

EXECUTIVE SUMMARY ................................................................................................ 
Background and Objectives .......................................................................................... 
Research Methods .......................................................................................................... 
Results .............................................................................................................................. 
Recommendations .......................................................................................................... 

i 
i 
ii 
ii 
ii 

INTRODUCTION............................................................................................................... 1 

METHODOLOGY................................................................................................................ 
Subjects ............................................................................................................................ 
Analysis ............................................................................................................................ 

2 
2 
3 

RESULTS............................................................................................................................. 
Frequency Data:  Ordinary Least Squares, Weighted Least 
Squares, Poisson, and Negative Binomial Regression Models............................... 
Categorical Data:  Linear Probability and Logistic Regression Models............... 
Classification and Prediction Accuracy...................................................................... 

Predicting individual accident involvement........................................................ 
Sampling Validation Study ........................................................................................... 

4 

4 
9 

14 
15 
19 

DISCUSSION...................................................................................................................... 22 

REFERENCES................................................................................................................... 24 

LIST OF TABLES 

NUMBER 
1 Summary of Nonconcurrent 6-Year (1986-88; 1989-91) 

Multiple Regression Equation for Predicting Total Accidents 
Using Ordinary Least Squares and Weighted Least Squares 
Regression Models (n = 152,931) ........................................................................ 4 

2 Summary of Nonconcurrent 6-Year (1986-88; 1989-91) 
Multiple Regression Equation for Predicting Total Accidents 
Using Poisson and Negative Binomial Models (n = 152,931)........................ 7 

3 Accident Frequency Elasticity Estimates........................................................ 8 

4 Percentage Change in Mean Accident Frequency (λi j) 
Due to Binary Independent Variables ............................................................... 9 

iii 



 

EXPLORATORY MULTIVARIABLE ANALYSES 

TABLE OF CONTENTS (continued) 

LIST OF TABLES (continued) 

NUMBER PAGE 
5 Summary of Nonconcurrent 6-Year (1986-88; 1989-91) Multiple 

Regression Equation for Predicting Total Accidents Using 
Linear Probability and Logistic Regression Models (n = 152,931)............... 10 

6  Odds Ratios for Prediction of Total Accident 
Involvement from Logistic Regression Analysis of 
6-Year Nonconcurrent Data (1986-88; 1989-91) (n = 152,931) .................. 12 

7 Predicted Frequency of Accidents From Multiple Regression 
Equations at Various Values of the Predictor Variables............................... 13 

8 Number of Drivers Identified in Each 3-year (1989-91) 
Accident-Risk Strata By Each Model................................................................ 14 

9 Contingency Table of Predicted vs. Actual Outcomes ................................... 15 

10 Predicted 3-Year Accident-Involvement Frequency and 
Percentage Using Ordinary Least Squares Regression................................. 16 

11 Predicted 3-Year Accident-Involvement Frequency 
and Percentage Using Poisson Regression ....................................................... 16 

12 Predicted 3-Year Accident-Involvement Frequency and 
Percentage Using Linear Probability Regression............................................ 17 

13 Predicted 3-Year Accident-Involvement Frequency and 
Percentage Using Logistic Regression............................................................... 17 

14 Descriptive Statistics for the Total Sample and 10% Sample..................... 19 

15 Summary of Nonconcurrent 6-Year (1986-88; 1989-91) 
Regression Equation for Predicting Total Accidents 
within the 10% Sample Using Ordinary Least Squares, Poisson, and 
Logistic Regression Models (n = 15,348) ........................................................... 20 

16 Number of Drivers Identified in Each 3-Year (1989-91) 
Accident Risk Strata by Each Model for the 10% Sample............................ 21 

17 Predicted 3-Year Accident Involvement Using Ordinary 
Least Squares Regression for the 10% Sample............................................... 21 

18 Predicted 3-Year Accident Involvement Using Poisson 
Regression for the 10% Sample .......................................................................... 22 

19 Predicted 3-Year Accident Involvement Using Logistic 
Regression for the 10% Sample .......................................................................... 22 

iv 
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INTRODUCTION 

This paper presents the results of a number of regression analyses of driving record 
variables measured over a 6-year time period (1986-91).  The objective of the 
analyses was to compare the results obtained from several different regression 
techniques under consideration for use in the 1996 California Driver Record Study, 
which is currently in progress.  Because this latter effort will both include and extend 
the present dataset and analyses, no detailed interpretation of the results will be 
presented here.  Rather, the following presents only the multiple regression equations 
and highlights the major findings. 

Past California driver record studies, and many other studies of the California DMV, 
have utilized standard parametric techniques such as analysis of variance, analysis 
of covariance and ordinary least squares (OLS) multiple regression models in 
analyzing the relationship between a variety of independent variables and 
subsequent accident rates.  The justification for using OLS-based parametric 
methods on non normally-distributed accident count variables is provided in several 
previous California DMV publications, such as Peck and Kuan (1983), DeYoung 
(1995) and Gebers, DeYoung, and Peck (1997). In general, these justifications are 
based on asymptotic arguments–i.e., the operation of the central limit theorem in 
producing approximate normality of the test statistic when N is extremely large. The 
results of a number of Monte Carlo studies have also been cited as an additional 
defense, including the effects of violating the homoscedasticity assumption when 
heteroscedasticity is not extreme. 

Recent years have witnessed the development and increased availability of 
techniques which are less reliant on asymptotic arguments and more anchored in 
formal mathematical derivation.  Among these techniques are Poisson and negative 
binomial regression, weighted least squares regression, logistic regression, and probit 
regression.  It is therefore becoming more common to see unqualified indictments 
against the use of OLS-based techniques on highly non-normal data such as accident 
frequencies.  A number of authors (Maddala, 1991; Kleinbaum et al., 1988) point out 
that highly skewed Poisson-like variables produce heteroscedastistic residuals, 
thereby introducing “inconsistency” into the parameter estimates produced by OLS 
techniques.  Draper and Smith (1966) note that use of OLS-multiple regression in the 
presence of heteroscedasticity and non-normality results in regression models which, 
though not biased, do not satisfy the property of minimum variance.  Other authors 
point out that OLS models can produce parameter estimates (Y ’s) that reside outside 
the permissible range of observed values (e.g., negative values or values above 1.0 for 
binary dependent variables). 

These concerns have also been raised in connection with studies of both driver and 
roadway accident rates.  In a recent article on the pitfalls of using R2 as a measure to 
evaluate goodness-of-fit of accident prediction models, Miaou, Lu, and Lum (1996) list 
a number of disadvantages of OLS-based methods, as noted below: 

Because accident prediction models are nonnormal and functional forms are 
typically nonlinear, this study showed through simulated examples that R2 is 
not an appropriate measure to make the decisions and comparisons described. 
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EXPLORATORY MULTIVARIABLE ANALYSES 

Furthermore, three properties were identified as desirable for any alternative 
measure to appropriately evaluate the models:  (a) it should be bounded 
between 0 and 1–a value of 0 if no covariate (other than the intercept) is 
included in the model and a value of 1 if all the necessary covariates are 
included, (b) it should increase proportionally as equally important, independent 
covariates are selected and added to the model one at a time regardless of their 
order of selection, and (c) it should be invariant with respect to the mean (i.e., 
the value of the measure should not change by simply increasing or decreasing 
the value of the intercept term in the model).  (p. 13) 

The above attitude is also reflected in a monograph by Davis (1990), which was 
commissioned by the National Highway Transportation Safety Administration 
(NHTSA) in connection with the final report by Stock et al. (1983) on the Dekalb 
driver training project.  Davis (1990) was highly critical of the authors’ use of analysis 
of variance and multiple regression on grounds similar to Miaou et al., as evidenced by 
the following: 

The use of ANOVA techniques when the underlying assumptions are 
moderately violated may give results which are quite similar to those obtained 
from more appropriate methods of statistical analysis. However, based on the 
extremely skewed, non-normal distributions of the dependent variables in this 
study, the use of ANOVA methods is inappropriate.  (p. 11) 

With respect to the statistical methods used by DeWolf and Smith (1988), the 
multiple regression approach is subject to the same criticisms as were 
mentioned for the Stock et al. (1983) and Smith and Blatt (1987) reports, in 
that the distributions of the dependent variables (number of accidents, number 
of violations) do not satisfy the general linear model assumptions.  (p. 22) 

It is instructive to note that none of the above authors acknowledge the possible role 
of very large N in mitigating the effects of non-normality in the parent distribution. 

It is therefore informative to examine whether various methods produce similar 
results at different sample sizes and to explore whether reliance on OLS techniques in 
past California driver record studies have produced significance levels and parameter 
estimates that are materially biased. 

METHODOLOGY 

Subjects 
Data for the analyses were obtained from the driving records for a 1% random sample 
of licensed California drivers (n = 152,931) extracted in 1992 from the California 
Driver Record Study database.  Detailed information on this database is provided by 
Peck, McBride, and Coppin (1971), Peck and Kuan (1983), and Peck and Gebers 
(1992). 

To be eligible for selection into the sample, drivers had to meet the following criteria: 
(a) have a valid driver license at the beginning of the study period; (b) be alive as of 
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the May 1992 extraction date; and (c) possess a driver license that had not been 
expired for over 6 months as of the extraction date. 

For each subject, information was collected on (a) age; (b) gender; (c) presence of a 
physical or mental (P&M) condition code on record; (d) presence of license restrictions 
on record; (e) number of total citations occurring during 1986-88; and (f) number of 
total accidents occurring during 1986-88.  The following displays descriptive statistics 
for the biographical and driver-record variables: 

Variable n = 152,931 
Total accidents (1989-91) 

X 0.1517 

SD 0.4138 
Variance 0.1713 

Total accidents (1986-88) 

X 0.1706 

SD 0.4380 
Variance 0.1918 

Total citations (1986-88) 

X 0.6414 

SD 1.1964 
Variance 1.4313 

Age 

X 42.67 

SD 15.33 
Variance 234.96 

% Class 1/A or 2/B license 3.3 
% one or more P&M conditions 1.4 
% one or more restrictions 34.0 
% male 52.4 

Analysis 
Multiple regression analysis was used to identify which combination of variables in 
the pool provided the most accurate equation for predicting the criterion measure, 
total accident frequency during 1989-91.  To be included in the analyses, drivers had 
to be licensed for the entire 1986-91 period. 

In the following sections, results are presented for two types of regression models: 
(1) those using frequency data, where the dependent (criterion) variable represents 
the actual number of accident involvements, from 0 to K accidents, and (2) those 
using categorical data, where the accident criterion measure is a binary variable 
(equal to 0 if no accidents and 1 if one or more accidents). 
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RESULTS 

Frequency Data:  Ordinary Least Squares, Weighted Least Squares, Poisson, and 
Negative Binomial Regression Models 
Table 1 summarizes the results from the nonconcurrent 6-year (1986-88; 1989-91) 
ordinary least squares and weighted least squares multiple regression analyses.  All 
seven candidate variables were statistically significant predictors of accident 
involvement at the .10 level of probability, and, therefore, all were included in both 
regression equations.  The directions (positive or negative) of the regression 
coefficients indicate that increased accident involvement is associated with: 

• Increased prior citation frequency 
• Increased prior accident frequency 
• Having a commercial driver license (which is mostly held by high-mileage 

professional drivers) 
• Being young 
• Being male 
• Having one or more P&M conditions on record 
• Having one or more driver license restrictions on record 

Table 1 

Summary of Nonconcurrent 6-Year (1986-88; 1989-91) Multiple Regression 
Equation for Predicting Total Accidents Using Ordinary Least Squares 

and Weighted Least Squares Regression Models (n = 152,931) 

Ord

Predictor variable Regression 
coefficient 

Constant 0.211 

inary least

Standard 
error I 
0.005 

 squares 

F I 
1741.49 

Wei

Regression p coefficient I 
.000 0.207 

ghted least squares 

Standard 
error I 
0.005 

F I 
1875.48 

p I 
.000 

Prior total citations 0.029 0.009 965.10 .000 0.030 0.001 857.88 .000 
Prior total accidents 0.060 0.002 595.97 .000 0.059 0.003 489.40 .000 
License class 0.108 0.006 331.47 .000 0.108 0.007 265.73 .000 
Age -0.001 0.000 247.50 .000 -0.001 0.000 271.93 .000 
Gender -0.028 0.002 170.83 .000 -0.029 0.002 188.94 .000 
P&M indicator 0.060 0.009 44.83 .000 0.061 0.010 40.38 .000 
Restriction status 0.008 0.002 11.06 .000 0.007 0.002 9.45 .002 ------------- ----------------------- ----------------------F  for the equation = 546.81 F  for the equation = 503.33 

p  = .000 p  = .000 
2 2 
R  = .024 R  = .023 

Note. Only independent variables that contributed significantly (p < .10) to the prediction of the criterion measure were 
included in the models.  The criterion measure, total accidents during 1989-91, had a mean of 0.152 and standard deviation of 
0.414. 

The ordinary least squares regression equation takes the following form: 

Y ’ = A + B1 X1 + B2 X2 + … BK XK 
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where Y ’ is the predicted value (either a positive or negative continuous value) on the 
dependent variable, A is the Y-intercept (the value of Y when all the X values are 
zero), the Xs represent the various independent variables (of which there are K), and 
the Bs are the regression coefficients assigned to each of the independent variables. 
Linear regression models are usually additive models (from which one can estimate 
increments in absolute risk) rather than multiplicative models (from which one can 
estimate relative risks).  Parameters can be included for estimating nonlinear and 
interactive (nonadditive) relationships, but the model is still linear and additive in the 
context of the fitted parameter vector. 

The reader should note that the use of multiple regression involves meeting the 
following assumptions: (1) Independence–the Y observations are statistically 
independent of one another, (2) Linearity–the value of Y ’ is a linear function of 
X1, X2, … XK, (3) Homoscedasticity–the variance of Y ’ is the same for any fixed 
combination of X1, X2, … XK, (4) Normality–the errors of prediction are normally 
distributed at all levels of Y’, (5) Measurement infallibility–the variates are free of 
measurement error, and (6) Additivity–the effect terms (coefficients) of the 
parameters can be combined in an additive fashion to estimate Y. Failure to meet 
the above assumptions are potential threats to the accuracy of the parameter 
estimates. 

As stated above, a fundamental assumption underlying unweighted least squares 
linear regression analysis is that all random errors have the same variance at 
different levels of the explanatory variable.  The homogeneity of residual error 
assumption is invariably violated with accident data because of the direct 
proportional relationship between the means and variances of the arrays, thereby 
introducing heteroscedasticity into the distribution of the residuals. 

The weighted-least squares method of analysis is a modification of standard 
regression analysis procedures and is used when a regression model is to be fit to data 
for which the assumptions of variance homogeneity and/or independence, stated 
above, do not hold.  The least squares residual sum of squares is: 

Σ(Yi - B0 - B1Xi - … BmXm)2. 

The weighted least squares residual sum of squares is: 

Σwi(Yi - B0 - B1Xi - … BmXm)2. 

where wi is the nonnegative weight assigned to an individual observation. 
Observations with small weights contribute less to the sum of squares and thus 
provide less influence to the estimation of parameters, and vice versa for 
observations with larger weights.  Therefore, it is logical to assign small weights to 
observations whose large error of prediction make them more unreliable, and likewise 
to assign larger weights to observations with smaller error of prediction.  It can, in 
fact, be shown that best linear unbiased estimates are obtained if the weights are 
inversely proportional to the individual errors (Kleinbaum, Kupper, & Muller, 1988). 
For the current analysis, it is assumed that the mean and standard deviation of the 
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accident criterion are proportional to one another.  Although this assumption is not 
perfectly met, the amount of variance overdispersion is small. 

In the present analysis, an ordinary least squares regression was run, and predicted 
scores and residuals were computed for all observations.  The sample was subdivided 
into quartiles on the basis of the distribution of the predicted scores.  The standard 
deviation of the residuals was calculated for each quartile.  The individual weights 
used in the follow-up weighted least squares regression were defined as the reciprocals 
of the standard deviations. 

A comparison of the results from the unweighted and weighted regression analyses in 
Table 1 shows the effect of weighting.  The regression coefficients obtained by the two 
methods are remarkably similar, and all significance levels (p values) except one are 
identical through three digits.  That one exception (restriction status) differed slightly 
on the third digit (p = .000 versus .002). 

As displayed in Table 1, R2 actually declined slightly, from .024 using ordinary least 
squares to .023 using weighted least squares.  Since OLS has the property of 
maximizing the R2, the quantity computed from the weighted least squares may be 
smaller than the OLS R2. This can lead to an interpretive quandary when the 
discrepancy is larger than exists here–namely preferring models with the highest R2, 
but acknowledging that, on theoretical grounds, a model with lower R2 is preferred. 

As noted earlier, attempts to model accident frequencies using least squares 
regression techniques have been criticized in prior research (e.g., Boyer, Dionne, & 
Vanasse, 1990; Grogger, 1990; Davis, 1990).  Linear models often assume a normal 
distribution of data and allow for the prediction of negative values. 

The above concern has led to the development and advocacy of the Poisson regression 
model.  The Poisson distribution lends itself to the modeling of either count or means 
data by virtue of its discrete, nonnegative integer distribution.  In the case of traffic 
accidents, the Poisson distribution gives 

λK 

Pr (Y = K) = (e-λ) 
K!  

where Pr (Y = K) is the probability that the number of accidents, Y, will equal K, 
e = 2.718 (base of the natural logarithm), and λ is the expected number of accidents. 
Given a vector of variables, λ for an individual driver can be estimated by the 
equation, 

ln λi 
’ = XiB 

where X is a vector of variables (e.g., age, gender, prior citations) and B is a vector of 
estimable coefficients. 

Poisson models are generally multiplicative.  Poisson regression models are not 
restricted to all of the assumptions noted above for multiple linear regression and are 
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specifically applicable to discrete count data where the probability of a given event 
(e.g., accidents) is relatively infrequent and can be approximated by a Poisson 
probability function. 

The Poisson distribution, however, suffers from a potentially important limitation, 
namely that the dependent variable’s mean and variance are constrained to be equal. 
Data overdispersion (in which the variance is greater than the mean) or 
underdispersion (in which the variance is less than the mean) violates this constraint 
and leads to biased estimates of the significance of the regression coefficients.  If 
overdispersion is present, the negative binomial regression model is employed as an 
alternative. 

The negative binomial model is an extension of the Poisson regression model which 
allows the variance of the process to differ from the mean.  The negative binomial 
model is 

ln λi = B Xi + ε, 

where exp (ε) has a gamma distribution with mean 0 and variance γ. 

Table 2 presents the results from the Poisson and negative binomial regression 
analyses.  As stated above, overdispersion is a phenomenon that sometimes occurs 
in data that are arguably inappropriately modeled with a Poisson distribution.  If the 
estimate of dispersion (variance divided by the mean) is greater than 1, then the data 

Table 2 

Summary of Nonconcurrent 6-Year (1986-88; 1989-91) 
Multiple Regression Equation for Predicting Total Accidents Using Poisson 

and Negative Binomial Models (n = 152,931) 

Predictor variable 

Poisson regression Negative binomial regression 

Regression 
coefficient 

Standard 
error 

χ2 p Regression 
coefficient 

Standard 
error 

χ2 p 

Constant 
Prior total citations 
Prior total accidents 
License class 
Age 
Gender 
P&M indicator 
Restriction status 

-1.35 0.032 1842.69 
0.112 0.004 725.35 
0.274 0.012 545.11 
0.458 0.027 282.07 

-0.009 0.001 365.23 
-0.218 0.014 240.36 
0.279 0.045 37.88 
0.049 0.015 11.20 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

-1.36 0.024 3095.26 
0.114 0.003 1195.01 
0.275 0.009 897.50 
0.458 0.021 462.94 

-0.009 0.000 612.68 
-0.217 0.011 402.02 
0.284 0.035 64.59 
0.049 0.011 18.60 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

Deviance = 95,760 
Pseudo-R2 = .03577 

Deviance = 89,006 
Pseudo-R2 = .03626 

Note.  Only independent variables that contributed significantly (p < .10) to prediction of the criterion 
measure were included in the models. The criterion measure, total accidents during 1989-91, had a mean 
of 0.152 and standard deviation of 0.414. 
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may be overdispersed.  On the other hand, if the dispersion estimate is less than 1, 
then the data may be underdispersed.  If the value is within the typically-acceptable 
0.8 to 1.2 range, the model can be considered to be correctly specified (SAS Institute 
Inc., 1993; Hilbe, 1994).  As displayed in Table 2, the dispersion statistic associated 
with the Poisson model is 1.08, which indicates that overdispersion may not be a 
problem with these data.  (For a discussion on tests for detecting overdispersion in 
Poisson regression models, the interested reader is referred to Dean and Lawless 
[1989].) 

As can be seen, the results for the Poisson and negative binomial models are quite 
similar.  Since the Poisson model is a particular case of the negative binomial model, 
the difference in the deviance goodness-of-fit statistics for the two models can be 
compared to decide if there is any gain in “model fit” from using a negative binomial 
regression (the better fitting model having the lower deviance score).  The difference of 
6,754 between the deviance statistics is significant (p < .000), indicating that the 
negative binomial model performs significantly better than does the Poisson model. 
However, each of the two models explains about the same amount of variance–the 
pseudo-R2 is .0358 for the Poisson model and .0363 for the negative binomial model. 

It should be noted that the results from the Poisson and negative binomial 
regressions parallel those from the linear models presented in Table 1, since the 
directions (i.e., signs) and p values of the regression coefficients are essentially 
identical.  In fact, the p values for the variables in Table 2 are identical to those for 
the OLS model through three digits.  (These pseudo-R2 statistics are usually not 
comparable to the “true” R2 produced by ordinary least squares and weighted least 
squares regression.) 

Elasticities of independent variables were estimated from the Poisson parameters to 
determine the impact of these variables on accident frequency.  Elasticities can be 
roughly defined as the percentage change in the number of accidents resulting from a 
1% change in the independent variable.  Elasticities for each individual observation 
were computed, and then an average elasticity was estimated for the sample. 
Because the elasticities of binary variables are not meaningful, Table 3 presents 
elasticities only for the continuous predictor variables. 

Table 3 

Accident Frequency Elasticity Estimates 

Independent variable Elasticity (%) 
Prior total citations 0.072 
Prior total accidents 0.047 
Age -0.434 
Note. Elasticity is defined as the percentage change in the average number of accidents that 
would be expected to result from a 1.000% change in the independent variable. 
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Table 3 provides some interesting insights.  For example, a 1.000% increase in the 
number of prior total citations is associated with a 0.072% increase in subsequent 
accident frequency.  Similarly, a 1.000% increase in prior total accidents is associated 
with a 0.047% increase in subsequent accident frequency.  This suggests that, at 
least for these variables, accident likelihood may be more sensitive to prior citations 
than to prior accidents. 

To gain some understanding of the relative importance of the binary variables 
included in the Poisson regression model, a computation can be performed to provide 
an idea of the relative effect of these variables on mean accident frequency (λij). This 
is accomplished using the coefficients in Table 2. For example, λij can be said to 
increase 58.1% (e0.458/e0) if a driver holds a commercial driver license. 

Table 4 presents the percentage change in associated with each binary λij 
independent variable.  These percentage changes are somewhat analogous to the 
above elasticity coefficients except they represent increases in relative risk rather 
than additive increments per unit of change. 

Table 4 

Percentage Change in Mean Accident Frequency (λij) 

Due to Binary Independent Variables 

Independent variable % change in λij 
License class 58.1 
Restriction status 5.0 
P&M status 32.2 
Gender -19.6 

Categorical Data:  Linear Probability and Logistic Regression Models 
Models used to estimate the probability of accidents from individual driver 
characteristics usually involve categorical data where the dependent variable is 
binary (0 for no accidents and 1 for one or more accidents) (Boyer, Dionne, & 
Vanasse, 1990). This section presents the results from the standard ordinary least 
squares linear probability model and the logistic regression model.  The predictor and 
criterion variables used in these models are the same as those used in the frequency-
data models presented above. 

Table 5 presents results from the linear probability and logistic regression analyses. 
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Table 5 

Summary of Nonconcurrent 6-Year (1986-88; 1989-91) Multiple Regression 
Equation for Predicting Total Accidents Using Linear Probability 

and Logistic Regression Models (n = 152,931) 

Predictor variable 
Linear probability regression Logistic regression 

Regression 
coefficient 

Standard 
error 

F p Regression 
coefficient 

Standard 
error Wald χ

2 p 

Constant 
Prior total citations 
Prior total accidents 
License class 
Age 
Gender 
P&M indicator 
Restriction status 

0.185 0.004 1975.43 .000 
0.022 0.001 819.51 .000 
0.041 0.002 409.41 .000 
0.073 0.005 225.64 .000 

-0.001 0.000 259.11 .000 
-0.022 0.002 153.79 .000 
0.037 0.007 25.67 .000 
0.005 0.002 8.28 .004 

-1.336 0.037 1325.36 .000 
0.139 0.006 605.09 .000 
0.287 0.015 356.65 .000 
0.481 0.035 187.47 .000 

-0.010 0.001 301.54 .000 
-0.212 0.016 174.63 .000 
0.269 0.058 21.94 .000 
0.047 0.017 7.74 .005 

F for the equation = 445.57 
p = .000 
R2 = .020 

-2 Log L for intercept only = 120045.03 
-2 Log L for intercept and covariates = 117348.76 
Chi-square for covariates = 3056.82, df = 7, p = .000 

Note.  Only independent variables that contributed significantly (p < .10) to prediction of the 
criterion measure were included in the models.  The criterion measure, total accidents during 1989-
91, had a mean of 0.152 and standard deviation of 0.414. 

The standard ordinary least squares linear probability model is defined as 

Y ’ i = A + B1 X1 + B2 X2 + … BKXK 

where the Xs represent the independent variables, and the Bs are the regression 
coefficients assigned to the independent variables. The dependent variable Y ’ is 
dichotomous:  Y ’ i = 1 if the i-th individual had one or more accidents during 1989-91, 
Y ’ i = 0 otherwise.  The expected value of Y can be interpreted as the probability that 
Y = 1 or more. 

The results from the linear probability model indicate that the significant predictor 
variables explain part of the differences in accident probabilities between drivers. For 
example, each additional total citation during 1986-88 increases the probability of 
being involved in an accident in 1989-91 by 2.2 percentage points; an additional 
accident during 1986-88 increases the probability of being involved in a subsequent 
accident by 4.1%.  Being female reduces the probability of accident involvement by 
2.2 percentage points. 

The parameter estimates from the linear probability model are proportionally similar 
to the ordinary least squares estimates presented in Table 1.  The shrinkage in R2 

from .024 in the ordinary least squares model to .020 in the linear probability model is 
attributable to the loss of information resulting from using a binary rather than 
continuous accident criterion measure. 
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The linear regression model has several potential limitations when the dependent 
variable is binary (Maddala, 1991).  First, there is a serious heteroscedasticity 
problem, meaning that the estimates of the prediction errors are not normally 
distributed.  Secondly, the predicted value could possibly be outside the range of 0 to 1 
for certain values of the predictor variables. This is particularly  troublesome if the 
expected value is interpreted as a probability.  For this application, a non-linear model 
such as logistic regression is more appropriate.  However, the non-linearity in the 
expected values only emerges as p approaches 0 or 1, and the two models tend to 
yield very similar results for p in the range of .20-.80. 

Because logistic regression models are nonlinear, the equations used to describe the 
outcomes are more complex than those for OLS multiple regression models.  The 
outcome variable, Y ’ i is the probability of having one outcome or another (0 vs. 1 or 
more accidents) based on a nonlinear function of the best linear combination of 
predictors.  For two possible outcomes: 

Y’
i = 

eU 

1 + eU 

where Y ’ i is the estimated probability that the ith case (i = 1, 2, … n) is in one of the 
categories and U is the linear regression equation: 

U = A + B1 X1 + B2 X2 + … + BK XK 

with constant A, coefficients Bj, and predictor, Xj for K predictors (j = 1, 2, … K). 

This linear regression equation creates the logit, or log of the odds ratio: 

ln = A + ∑ Bj X ij (  Y’ ) 1 - Y’ 

That is, the linear regression equation is the natural log of the probability of having 
one outcome (accident-free) divided by the probability of having the other outcome 
(accident-involved).  The procedure for estimating coefficients is maximum likelihood, 
and the goal is to find the best linear combination of predictors to maximize the 
likelihood of obtaining the observed outcome frequencies (Hosmer and Lemeshow, 
1989). 

Again, the signs (positive or negative) and p values of the logistic regression 
coefficients in Table 5 are similar to those of the prior analyses. 

Table 6 presents the odds ratios obtained from the logistic regression equation.  The 
odds ratio as applied here refers to the relative odds of being accident-involved, as a 
function of a predicted driver-record category.  For example, the odds ratios in Table 6 
indicate that: 
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• Drivers with two prior citations are 1.32 times as likely to have a subsequent 
accident than are drivers with no prior citations. 

• Drivers with two prior accidents are 1.78 times as likely to have a subsequent 
accident than are drivers with no prior accidents. 

Table 6 

Odds Ratios for Prediction of Total Accident Involvement from Logistic Regression 
Analysis of 6-Year Nonconcurrent Data (1986-88; 1989-91) (n = 152,931) 

Predictor variable Odds-ratio 
Prior total citations (1986-88) 

2 1.32 
4 1.75 
6 2.31 

Prior total accidents (1986-88) 
2 1.78 
4 3.15 

Age (years) 
5 0.95 

10 0.91 
15 0.86 

License class 1.62 
Driver license restriction 1.05 
Physical and mental condition 1.31 
Gender 1.24 

• The risk of a subsequent accident is 1.62 times higher for commercial drivers than 
it is for non-commercial drivers. 

• The risk of a subsequent accident is 1.24 times higher for men drivers than it is for 
women drivers. 

So that the reader may get an idea about the order of magnitude of the accident 
estimates generated from the Poisson, OLS, and weighted least squares models, 
values of predicted accident rates are displayed in Table 7 for selected values of the 
predictor variables.  While the values are arbitrary, they are within the range of 
values for the predictor variables. All models produce very similar estimates of 
accident risk for the portrayed driver groups.  The Poisson and negative binomial 
regression models do yield higher estimated risk levels for drivers with extremely 
elevated counts of total citations and total accidents.  However, such “deviant” 
records are rare.  Approximately 2% of the sample had five or more citations during 
the prior 3-year (1986-88) period.  As is shown later, these differences in expected 
values do not alter the comparative accuracy of the equations in predicting whether a 
given driver is accident-free or accident-involved. 
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Table 7 

Predicted Frequency of Accidents from Multiple Regression Equations 
at Various Values of the Predictor Variables 

Independe 
nt  

variable 
combinatio 

n 

Predictor variable value Y ’ λ ’ 

Sex Age License 
class 

Restrictio 
n 

status 

P & M 
status 

1986-88 
total 

citations 

1986-88 
total 

accidents 

Ordinary 
least 

squares 
estimatea 

Weighted 
least 

squares 
estimateb 

Poisson 
estimatec 

Negative 
binomial 
estimated 

A 1.48 45.67 0.033 0.34 0.01 0.64 0.17 0.1513 0.1481 0.1422 0.1421 

B 1 35 1 1 0 5 2 0.5228 0.5121 0.7531 0.7601 

C 1 45 1 0 0 6 2 0.5328 0.5291 0.7299 0.7385 

D 1 59 0 1 1 3 1 0.3289 0.3396 0.3053 0.3082 

E 1 60 0 1 0 2 0 0.1788 0.1856 0.1556 0.1558 

F 1 70 0 0 1 0 0 0.1607 0.1653 0.1425 0.1428 

G 2 29 0 0 0 3 1 0.2679 0.2699 0.2346 0.2358 

H 2 30 0 1 0 0 0 0.1268 0.1200 0.1327 0.1324 

I 2 35 1 1 0 5 2 0.4946 0.4829 0.6058 0.6118 
Note.  For license class, 0 = Class 3/C or motorcycle; 1 = Class 1/A or 2/B.  For restriction status, 0 = no license restriction on record; 1 = one or more license restrictions on 
record.  For P&M status, 0 = no P&M condition on record; 1 = one or more P&M conditions on record. For sex, 1 = male; 2 = female.  Values in row "A" represent sample 
averages. 
aEquation for ordinary least squares estimate: 

’ 
Y = 0.21060199 + (0.10759473 x License class) + (0.00769221 x Restriction status) + (0.05990415 x P&M status) + (-0.00116449 x Age) + 

(0.02933590 x Total citations) + (0.0596493 x Total accidents) + (-0.02827030 x Sex) 
bEquation for weighted least squares regression: 

’ 
Y = 0.204585 + (0.092161 x License class) + (0.006735 x Restriction status) + (0.066815 x P&M status) + (-0.001100 x Age) + 

(0.034696 x Total citations) + (0.051395 x Total  accidents) + (-0.029154 x Sex) 
cEquation for Poisson estimate: 

λ 
’ 
= exp [-1.3517 + (0.4583 x License class) + (0.0491 x Restriction status) + (0.2789 x P&M status) + (-0.0094 x Age) + (0.1119 x Total citations) + 

(0.2739 x Total accidents) + (-0.2176 x Sex)] 
dEquation for negative binomial estimate: 

λ 
’ 
= exp [-1.3550 + (0.4582 x License class) + (0.0488 x Restriction status) + (0.2840 x P&M status) + (-0.0094 x Age) + (0.1139 x Total citations) + 

(0.2751 x Total accidents) + (-0.2170 x Sex)] 
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Classification and Prediction Accuracy 
Two measures of performance were used to compare the adequacy of the different 
regression techniques.  The first measure selects the group of drivers with the most 
prior total accidents in 1986-88, another group with the most prior total citations in 
1986-88, and five more groups estimated from the predicted scores in the multiple 
regression models as having the highest accident potential.  Next, a count was made 
of the number of subsequent accidents in which the drivers of these seven groups 
were involved during 1989-91.  The model or scheme that identified drivers who in 
1989-91 had the most accidents was deemed best.  All models were compared at Y ’ 

thresholds which produced equal numbers of high-risk drivers. 

The second approach evaluated the accuracy of the models in terms of predicting the 
subsequent accident status of the subjects (accident-involved versus accident-free). 
The false-negative and false-positive rates produced by the models were compared at 
a variety of “cut points” in order to evaluate the respective sensitivity and specificity 
of the equations in predicting subsequent accident involvement. 

The performance of each of the seven schemes (prior citations, prior accidents, and 
the five regression models) is presented in Table 8. Several conclusions emerge from 
these results.  First, to identify drivers with high accident potential, one can do better 
than to use either prior citations or prior accidents alone.  Second, no one multiple 
regression procedure substantially outperforms the others. Third, the larger the pool 
of drivers that are considered, the lower is the “yield.”  For example, among drivers 
selected by the Poisson regression model, the 1,000 highest accident-risk drivers 
have, on the average, about 0.47 accidents over the subsequent 3-year period, which 
is 2.76 times the average (0.17) for the total sample; the next 4,000 have about 0.35 
accidents per driver over the subsequent 3-year period; the next 5,000 have about 
0.27 accidents per driver over the subsequent 3-year period; and drivers ranking 
between 20,000 and 120,000 have 0.16 accidents per driver over the 3-years. 

Table 8 

Number of Drivers Identified in Each 3-Year (1989-91) 
Accident-Risk Strata by Each Model 

Model 
Drivers estimated by model to be in: 

Top 
1,000 

Next 
4,000 

Next 
5,000 

Next 
10,000 

Next 
100,000 Total 

Prior accidents (1986-88) 
Prior citations (1986-88) 
Ordinary least squares 
Poisson 
Negative binomial 
Linear probability 
Logistic 

406 
377 
473 
471 
469 
467 
463 

986 1,234 2,048 14,258 
1,210 1,326 2,260 14,124 
1,380 1,385 2,317 14,783 
1,388 1,345 2,307 14,764 
1,390 1,343 2,310 14,770 
1,381 1,389 2,338 14,753 
1,380 1,372 2,311 14,769 

18,932 
19,297 
20,338 
20,275 
20,282 
20,328 
20,295 

Note.  Entries for prior accidents and citations represent the numbers of drivers having the highest 
counts of incidents during 1986-88. 
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The following section provides a comparison of the models in terms of “hits,” “false 
alarms,” and “misses” in estimating individual accident involvement. 

Predicting individual accident involvement.  Multiple regression equations can be used 
to predict whether or not a driver will be accident-involved in a subsequent period of 
time.  The accuracy of the classification can be summarized in Table 9. 

Table 9 

Contingency Table of Predicted vs. Actual Outcomes 

Actual state 

Predicted state 

Accident-involved Accident-free 

Accident-involved 

Accident-free 

a (true positive) b (false negative) 

c (false positive) d (true negative) 

This classification table is obtained by accumulating the number of observations for 
each category.  Sensitivity is the proportion of the event (i.e., accident-involved) 
outcomes that were predicted to be accident involved.  Specificity is the proportion of 
no event (i.e., accident-free) outcomes that were predicted to be no event.  The false-
positive rate is the proportion of predicted accident outcomes that were observed as 
no accidents. The false-negative rate is the proportion of predicted no accident 
outcomes that were observed as accidents. 

With perfect prediction, all drivers would be counted in cells a and d, and none would 
be counted in cells b and c. Drivers counted in cell c are false positives.  They are 
predicted to be accident-involved, but are actually accident-free.  Drivers counted in 
cell b are false negatives.  They are predicted to be accident-free, but are actually 
accident-involved.  The desired outcome is to minimize the proportion of drivers in 
cells b and c and to make fewer errors than would be made in classifying drivers 
without the prediction equation.  To be of any use, the equation must result in more 
classification accuracy than could be expected by chance alone. 

To illustrate the accuracy of the regression equations in predicting the future accident 
expectancy of individual drivers, a series of four-fold contingency tables were 
generated displaying the relationship between each individual’s predicted and actual 
accident-involvement frequency. 

Tables 10-13 were constructed, each differing in the predicted accident score used for 
predicting whether a given driver will have an accident.  These cutoff scores were 
selected by generating predicted accident scores from the different equations and then 
iteratively tabulating the sample using different scores of the predicted values until 
nearly equal marginal proportions were obtained.  The tables summarize the results 
for the ordinary least squares, Poisson, linear probability, and logistic regression 
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procedures.  The cutoff score used in each analysis also produced approximately equal 
numbers of false-negative and false-positive predictions, as would be expected from 
the equality of the marginal distributions.  The use of equal marginals assigns equal 
weights to both types of errors and tends to maximize the overall accuracy of 
classification as represented by the phi coefficient. 

Table 10 

Predicted 3-Year Accident-Involvement Frequency and 
Percentage Using Ordinary Least Squares Regression 

Actual accident status 

Predicted accident status 

Total Accident-involved Accident-free 

Accident-involved 

Accident-free 

Total 

Percent correctly classified 

4,609 
(3.01%) 

15,762 
(10.31%) 

20,371 
(13.32%) 

22.63% 

15,766 
(10.31%) 

116,794 
(76.37%) 

132,510 
(86.68%) 

88.11% 

20,375 
(13.32%) 

132,556 
(86.68%) 

152,931 
(100.00%) 

Note. A  predicted accident rate cutoff of 0.216 was used to equalize marginals.  The odds ratio is 
2.2, and the phi coefficient is .11. 

Table 11 

Predicted 3-Year Accident-Involvement Frequency 
and Percentage Using Poisson Regression 

Actual accident status 

Predicted accident status 

Total Accident-involved Accident-free 

Accident-involved 

Accident-free 

Total 

Percent correctly classified 

4,551 
(2.98%) 

15,787 
(10.32%) 

20,338 
(13.30%) 

22.38% 

15,824 
(10.35%) 

116,769 
(76.35%) 

132,593 
(86.70%) 

88.07% 

20,375 
(13.32%) 

132,556 
(86.68%) 

152,931 
(100.00%) 

Note. A  predicted accident rate cutoff of 0.200 was used to equalize marginals.  The odds ratio is 
2.1, and the phi coefficient is .10. 
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Table 12 

Predicted 3-Year Accident-Involvement Frequency 
and Percentage Using Linear Probability Regression 

Actual accident status 

Predicted accident status 

Total Accident-involved Accident-free 

Accident-involved 

Accident-free 

Total 

Percent correctly classified 

4,587 
(3.00%) 

15,709 
(10.27%) 

20,296 
(13.27%) 

22.60% 

15,788 
(10.32%) 

116,794 
(76.41%) 

132,635 
(86.73%) 

88.10% 

20,375 
(13.32%) 

132,556 
(86.68%) 

152,931 
(100.00%) 

Note. A  predicted accident rate cutoff of 0.182 was used to equalize marginals.  The odds ratio is 
2.2, and the phi coefficient is .11. 

Table 13 

Predicted 3-Year Accident-Involvement Frequency 
and Percentage Using Logistic Regression 

Actual accident status 

Predicted accident status 

Total Accident-involved Accident-free 

Accident-involved 

Accident-free 

Total 

Percent correctly classified 

4,576 
(2.99%) 

15,796 
(10.33%) 

20,372 
(13.32%) 

22.46% 

15,799 
(10.33%) 

116,760 
(76.35%) 

132,559 
(86.68%) 

88.08% 

20,375 
(13.32%) 

132,556 
(86.68%) 

152,931 
(100.00%) 

Note. A  predicted accident rate cutoff of 0.175 was used to equalize marginals.  The odds ratio is 
2.1, and the phi coefficient is .11. 
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Using Table 10 as an example, this table shows a statistically significant association 
(p < 0.001) between predicted and actual accident involvement.  Persons predicted to 
have accidents are approximately 2 times more likely to have accidents than 
are those predicted to be accident-free (3.0 ÷ 13.3 = 22.6% vs. 10.3 ÷ 86.7 = 11.9%). 
However, the equation failed to correctly predict the majority of accident-involved 
drivers, as evidenced by the low true-positive rate of 22.6%.  Although the false-
negative rate (10.3 ÷ 86.7 = 11.9%) appears low, this percentage of misclassification 
represents the majority of the 13.3% of the total sample who were truly accident 
involved. 

The phi coefficient and odds ratio, shown at the bottom of each table, are commonly 
used indices for quantifying the degree of association in contingency tables.  The phi 
coefficient is simply the Pearson correlation coefficient between the actual and 
predicted accident-status categories.  The odds ratio refers to the relative odds of 
being accident-involved as a function of a predicted accident category.  More 
specifically, the odds ratio is equal to (P ÷ P ) ÷ (Pb ÷ Pd), where P , Pb, P , and Pd a c a c 

represent the grand percentages in the respective cells. 

In Table 10, the odds of predicted accident-involved subjects actually having an 
accident as opposed to not actually having an accident, are (3.0% ÷ 10.3%) = 0.2919. 
The same odds for the predicted accident-free group are (10.3% ÷ 76.4%) = 0.1350. 
The ratio of these two odds (i.e., the odds ratio) is 2.2.  If the odds of having an 
accident did not vary as a function of the sample’s predicted score, the odds ratio 
would be 1.  This would indicate no relationship between the categories.  An odds ratio 
exceeding 1 indicates some relationship between the categories. However, the index 
has no upper limit and is not a measure of correlation as is the phi coefficient.  The 
fact that the odds ratio and phi coefficient are of modest size in Table 10 indicates 
that the degree of individual predictive accuracy is low.  This is demonstrated by the 
previously-discussed high false-positive rate and the fact that the equation 
misclassifies the majority of the accident-involved drivers. 

As demonstrated in Tables 10-13, all four multiple regression techniques are almost 
identical in accuracy of individual prediction.  For example, the percent correctly 
classified as accident-involved ranges between 22.6% for ordinary least squares 
regression and 22.4% for Poisson regression.  Although not shown here, additional 
contingency tables were produced for the four regression techniques using cutoff-
score values that would predict accident involvement for all drivers with accident 
expectancies of first two or more, and then three or more, standard deviations above 
the mean.  As was the case with equal marginals, the four regression methods 
produced almost identical results in correctly classifying accident-involved and 
accident-free drivers. 
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Sampling Validation Study 
In an attempt to investigate the dependence of the preceding results on sample size, 
an additional study was performed by selecting a 10% (n = 15,348) random sample of 
the drivers used in the above analyses. For purposes of this additional analysis, 
equations were produced for the ordinary least squares, Poisson, and logistic 
regression techniques. 

Table 14 displays descriptive statistics for the biographical and driver record 
variables for the total sample and the 10% sample. 

Table 14 

Descriptive Statistics for the Total Sample and the 10% Sample 

Variable Total sample 
(n = 152,931) 

10% sample 
(n = 15,348) 

Total accidents (1989-91) 
X 0.1517 0.1533 
SD 0.4138 0.4152 
Variance 

Total accidents (1986-88) 
0.1713 0.1724 

X 0.1706 0.1680 
SD 0.4380 0.4353 
Variance 

Total citations 
0.1918 0.1895 

X 0.6414 0.6409 
SD 1.1964 1.1859 
Variance 

Age 
1.4313 1.4064 

X 45.67 45.44 
SD 15.33 15.17 
Variance 234.96 230.26 

% class 1/A or 2/B 3.3 3.4 
% one or more P&M conditions 1.4 1.4 
% one or more restrictions 34.0 33.8 
% male 52.4 52.6 

In comparing the samples, it is evident that differences between the total and 10% 
samples on the biographical and driver record variables are very small (less than 4% 
in absolute value). 

Table 15 presents a summary of the regression equations for the reduced sample 
study.  As was the case with the previous analyses, subsequent total accidents was 
associated with: 
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• Increased prior citation frequency 
• Increased prior accident frequency 
• Having a commercial driver license 
• Being young 
• Being male 
• Having one or more P&M conditions on record 
• Having one or more driver license restrictions on record 

Note from Table 15 that the p values for the first six coefficients are identical through 
three digits.  Only the p values for P&M and restriction status differ. 

Table 15 

Summary of Nonconcurrent 6-Year (1986-88; 1989-91) Multiple Regression 
Equation for Predicting Total Accidents within the 10% Sample Using Ordinary 

Least Squares, Poisson, and Logistic Regression Models (n = 15,348) 

Predictor 

Ordinary least squares 
regression 

Poisson regression Logistic regression 

variable Regression 
coefficient 

Standard 
error F p 

Regressio 
n 

coefficient 

Standard 
error χ2 p 

Regression 
coefficient 

Standard 
error 

Wald 
χ2 p 

Constant 0.230 0.016 207.09 .000 -1.245 0.099 158.20 .000 -1.241 0.115 115.62 .000 

Prior total 
citations 

0.026 0.003 75.15 .000 0.1023 0.014 56.07 .000 0.133 0.018 54.60 .000 

Prior total 
accidents 

0.062 0.008 63.84 .000 0.287 0.037 59.36 .000 0.319 0.048 44.60 .000 

License 
class 

0.126 0.019 46.52 .000 0.524 0.083 40.33 .000 0.527 0.108 23.81 .000 

Age -0.001 0.000 37.14 .000 -0.011 0.002 50.00 .000 -0.012 0.002 41.86 .000 

Gender -0.034 0.007 24.66 .000 -0.253 0.044 32.79 .000 -0.241 0.050 22.93 .000 

P&M 
indicator 

0.051 0.028 3.30 .069 0.238 0.143 2.75 .097 0.249 0.180 1.91 .166 

Restriction 
status 

0.019 0.007 6.42 .011 0.120 0.046 6.98 .008 0.133 0.053 6.31 .012 

F for the equation = 57.06 
p = .000 
R2 = .025 

Log likelihood for intercept only 
= -6765.0565 

Log likelihood for full model 
= -6583.0565 

Likelihood ratio test = 365.021, 
df = 7,  p < .000 

-2 Log L for intercept only 
= 12111.80 

-2 Log L for intercept and 
covariates = 11811.97 

Chi-square for covariates = 336.94, 
df = 7,  p < .000 

Note.  The criterion measure, total accidents during 1989-91, had a mean of 0.153 and a standard 
deviation of 0.415. 

Table 16 presents the number of accidents for drivers selected by the various models. 
Tables 17-19 present the classification of individual drivers into accident-status 
categories as determined by the regression models.  Prediction cutoff scores were 
selected in order to nearly equalize the marginals. 
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Table 16 

Number of Drivers Identified in Each 3-Year (1989-91) Accident 
Risk Strata by Each Model for the 10% Sample 

Model 

Drivers estimated by model to be in: 

Top 
500 

Next 
500 

Next 
1,000 

Next 
4,000 

Next 
5,000 

Total 

Prior accidents (1986-88) 

Prior citations (1986-88) 

Ordinary least squares 

Poisson 

Logistic 

140 

145 

177 

177 

179 

124 215 657 639 

132 223 729 621 

141 230 774 621 

147 230 750 644 

148 226 768 623 

1,775 

1,850 

1,943 

1,948 

1,944 

Note.  Entries for prior accidents and citations represent the numbers of drivers having the highest 
counts of incidents during 1986-88. 

Table 17 

Predicted 3-Year Accident Involvement Using 
Ordinary Least Squares Regression for the 10% Sample 

Actual accident status 

Predicted accident status 

Total Accident-involved Accident-free 

Accident-involved 

Accident-free 

Total 

Percent correctly classified 

461 
(3.00%) 

1,601 
(10.43%) 

2,062 
(13.43%) 

22.36% 

1,601 
(10.43%) 

11,685 
(76.13%) 

13,286 
(86.57%) 

87.95% 

2,062 
(13.43%) 

13,286 
(86.57%) 

15,348 
(100.00%) 

Note.  A predicted accident rate cutoff of 0.218 was used to equalize marginals.  The odds ratio is 
2.1, and the phi coefficient is .10. 
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Table 18 

Predicted 3-Year Accident Involvement Using 
Poisson Regression for the 10% Sample 

Actual accident status 
Predicted accident status 

Total Accident-involved Accident-free 
Accident-involved 

Accident-free 

Total 

Percent correctly classified 

464 
(3.02%) 
1,599 

(10.42%) 
2,063 

(13.44%) 
22.49% 

1,598 
(10.41%) 
11,687 

(76.15%) 
13,285 

(86.56%) 
76.15% 

2,062 
(13.43%) 
13,286 
(86.57%) 
15,348 

(100.00%) 

Note.  A predicted accident rate cutoff of 0.204 was used to equalize marginals.  The odds ratio is 
2.1, and the phi coefficient is .11. 

Table 19 

Predicted 3-Year Accident Involvement Using 
Logistic Regression for the 10% Sample 

Actual accident status 
Predicted accident status 

Total Accident-involved Accident-free 
Accident-involved 

Accident-free 

Total 

Percent correctly classified 

462 
(3.01%) 
1,596 

(10.40%) 
2,058 

(13.41%) 
22.45% 

1,600 
(10.42%) 
11,690 
(76.17%) 
13,290 
(86.59%) 

7.96% 

2,062 
(13.43%) 
13,286 
(86.57%) 
15,348 

(100.00%) 

Note.  A predicted accident rate cutoff of 0.178 was used to equalize marginals.  The odds ratio is 
2.1, and the phi coefficient is .10. 

As was the case with the previous analyses, the regression methods produced similar 
results in terms of driver selection and percent correctly classified into accident-
involved and accident-free categories.  The results of this validation analysis closely 
parallel the previous findings, providing substantiation for the robustness and 
reliability of the findings with sample sizes much smaller than the original N. 

DISCUSSION 

The results of the present analyses are consistent with those of prior research 
(e.g., Gebers & Peck, 1994; Peck & Gebers, 1992; Peck & Kuan, 1983).  For example, 
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it was shown in all the models that increased accident involvement was associated 
with increased prior citation and accident frequencies, possessing a commercial driver 
license, being young, being male, having a medical condition on record, and having a 
driver license restriction on record. 

Any generalization about driving performance from the present analyses is limited by 
the absence of exposure data (e.g., miles driven) and territorial data (e.g., driver record 
by ZIP Code and U.S. census variables).  Exposure and territorial variables not 
available from the driver record file have been collected and will be analyzed in the 
next report. 

Results presented in this paper indicate that with these data, the use of different 
regression techniques do not lead to any greater increase in individual accident 
prediction beyond that obtained through application of ordinary least squares 
regression.  It therefore appears safe to employ OLS multiple regression techniques 
on driver accident-count distributions of the type represented by California driver 
records, at least when Ns are extremely large.  This conclusion is consistent with 
those contained in Peck, McBride, and Coppin (1971) and Peck and Kuan (1983). 
Further asymptotic justifications for the use of parametric models on highly skewed 
accident count data can be found in DeYoung (1995) and Gebers, DeYoung, and 
Peck (1997). In fact, a series of follow-up analyses to the present findings provide 
support for the robustness of the parametric ordinary least squares technique in the 
presence of extreme skewness with Ns as small as 2,500 (Gebers, in press).  The 
results of these analyses indicate that the use of different regression techniques on 
smaller sample sizes do not lead to any lessor or greater of an increase in individual 
accident prediction beyond that obtained through application of ordinary least 
squares regression. 

In future reports, the statistical interaction between predictor variables (e.g., how the 
relationship between subsequent accidents and age varies as a function of the prior 
number of citations) will also be examined.  The subsequent analyses will also include 
the following: 

• Regressions on concurrent and nonconcurrent 3, 6, 9, 14, and 20-year samples. 

• Regressions using accident sub-type criteria, such as single-vehicle accidents, 
fatal/injury accidents, police-reported accidents, and culpable accidents. 

• Regressions using an expanded set of predictors that will include individual 
violation types (e.g., speeding, DUI, following too close) and additional driver 
licensing variables (e.g., type of restriction, limited-term license, vision referral, 
and number of months the driver license is suspended or revoked). 

The objective of these future studies will be to provide driver license officials, 
epidemiologists, traffic safety researchers, and organizations involved in risk 
management and assessment with actuarial data on driver accident risk profiles. 
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	•
	•
	•
	Since 1964, the California Department of Motor Vehicles has issued a number of monographs on driver characteristics and accident risk factors as part of a series of analyses known as the California Driver Record Study. 

	•
	•
	Past California Driver Record Study analyses, and many other studies conducted by the California Department of Motor Vehicles, have utilized standard parametric techniques such as analysis of variance, analysis of covariance, and ordinary least squares multiple regression models in analyzing the relationship between a variety of independent variables and subsequent accident rates. The justification for using these techniques is based on the operation of the central limit theorem in producing approximate nor

	•
	•
	This paper presents the results of a number of regression analyses of driving record variables measured over a 6-year time period (1986-91).  The techniques presented consist of ordinary least squares, weighted least squares, Poisson, negative binomial, linear probability, and logistic regression models. The objective of the analyses was to compare the results obtained from several different regression techniques under consideration for use in the 1996 California Driver Record Study, which is currently in p

	•
	•
	•
	The results are informative in determining whether the various regression methods produce similar results for different sample sizes and to explore whether reliance on ordinary least squares techniques in past California Driver Record Study analyses have produced biased significance levels and parameter estimates. 

	Research Methods 
	Research Methods 


	•
	•
	Data for the analyses were obtained from the driving records of a 1% random sample of licensed California drivers extracted in 1992 from the California Driver Record Study database. 

	•
	•
	•
	For each subject, information was collected on driver (a) age; (b) gender; 

	(c) presence of a physical or mental condition code on record; (d) presence of license restrictions on record; (e) number of total citations occurring during 198688; and (f) number of total accidents occurring during 1986-88. 
	-


	•
	•
	Ordinary least squares, weighted least squares, Poisson, negative binomial, linear probability, and logistic regression were used to identify which combination of variables in the pool provided the most accurate equation for predicting the accident criterion measure. 

	•
	•
	•
	Analyses are presented for two types of models:  (1) those using frequency data, where the dependent (criterion) variable represents the actual number of accident involvements, from 0 to K accidents, and (2) those using categorical data, where the accident criterion measure is a binary variable (equal to 0 if no accidents and 1 if one or more accidents). 

	Results 
	Results 


	•
	•
	•
	The results of the analyses are consistent with those of prior traffic safety research, with all of the models indicating that increased accident involvement was associated with the following: 

	– 
	– 
	– 
	Increased prior citation frequency 

	– 
	– 
	Increased prior accident frequency 

	– 
	– 
	Possessing a commercial driver license 

	– 
	– 
	Being young 

	– 
	– 
	Being male 

	– 
	– 
	Having a medical condition on record 

	– 
	– 
	Having a driver license restriction on record 



	•
	•
	The use of different regression techniques do not lead to any greater increase in individual accident prediction beyond that obtained through application of ordinary least squares regression. 

	•
	•
	•
	Any generalization about driving performance from the present analyses is limited by the absence of exposure data (e.g., miles driven) and territorial data (e.g., driver record information by ZIP Code and U.S. census variables). 

	Recommendations 
	Recommendations 


	•
	•
	The results indicate that, for these data, the use of the different regression techniques do not lead to any greater increase in individual accident prediction beyond that obtained through application of ordinary least squares regression.  In addition, the methods produce almost identical results in terms of the relative importance and statistical significance of the independent variables. 

	•
	•
	It therefore appears safe to employ ordinary least squares multiple regression techniques on driver accident-count distributions of the type represented by California driver records, at least when the sample sizes are large. 
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	INTRODUCTION 
	This paper presents the results of a number of regression analyses of driving record variables measured over a 6-year time period (1986-91).  The objective of the analyses was to compare the results obtained from several different regression techniques under consideration for use in the 1996 California Driver Record Study, which is currently in progress.  Because this latter effort will both include and extend the present dataset and analyses, no detailed interpretation of the results will be presented here
	Past California driver record studies, and many other studies of the California DMV, have utilized standard parametric techniques such as analysis of variance, analysis of covariance and ordinary least squares (OLS) multiple regression models in analyzing the relationship between a variety of independent variables and subsequent accident rates.  The justification for using OLS-based parametric methods on non normally-distributed accident count variables is provided in several previous California DMV publica
	Recent years have witnessed the development and increased availability of techniques which are less reliant on asymptotic arguments and more anchored in formal mathematical derivation.  Among these techniques are Poisson and negative binomial regression, weighted least squares regression, logistic regression, and probit regression.  It is therefore becoming more common to see unqualified indictments against the use of OLS-based techniques on highly non-normal data such as accident frequencies.  A number of 
	point out that OLS models can produce parameter estimates (Y s) that reside outside the permissible range of observed values (e.g., negative values or values above 1.0 for binary dependent variables). 
	’

	These concerns have also been raised in connection with studies of both driver and roadway accident rates.  In a recent article on the pitfalls of using Ras a measure to evaluate goodness-of-fit of accident prediction models, Miaou, Lu, and Lum (1996) list a number of disadvantages of OLS-based methods, as noted below: 
	2 

	Because accident prediction models are nonnormal and functional forms are 
	typically nonlinear, this study showed through simulated examples that Ris 
	2 

	not an appropriate measure to make the decisions and comparisons described. 
	Furthermore, three properties were identified as desirable for any alternative measure to appropriately evaluate the models:  (a) it should be bounded between 0 and 1–a value of 0 if no covariate (other than the intercept) is included in the model and a value of 1 if all the necessary covariates are included, (b) it should increase proportionally as equally important, independent covariates are selected and added to the model one at a time regardless of their order of selection, and (c) it should be invaria
	The above attitude is also reflected in a monograph by Davis (1990), which was commissioned by the National Highway Transportation Safety Administration (NHTSA) in connection with the final report by Stock et al. (1983) on the Dekalb driver training project.  Davis (1990) was highly critical of the authors’ use of analysis of variance and multiple regression on grounds similar to Miaou et al., as evidenced by the following: 
	The use of ANOVA techniques when the underlying assumptions are moderately violated may give results which are quite similar to those obtained from more appropriate methods of statistical analysis. However, based on the extremely skewed, non-normal distributions of the dependent variables in this study, the use of ANOVA methods is inappropriate.  (p. 11) 
	With respect to the statistical methods used by DeWolf and Smith (1988), the multiple regression approach is subject to the same criticisms as were mentioned for the Stock et al. (1983) and Smith and Blatt (1987) reports, in that the distributions of the dependent variables (number of accidents, number of violations) do not satisfy the general linear model assumptions.  (p. 22) 
	It is instructive to note that none of the above authors acknowledge the possible role of very large N in mitigating the effects of non-normality in the parent distribution. 
	It is therefore informative to examine whether various methods produce similar results at different sample sizes and to explore whether reliance on OLS techniques in past California driver record studies have produced significance levels and parameter estimates that are materially biased. 
	METHODOLOGY 
	Data for the analyses were obtained from the driving records for a 1% random sample of licensed California drivers (n = 152,931) extracted in 1992 from the California Driver Record Study database.  Detailed information on this database is provided by Peck, McBride, and Coppin (1971), Peck and Kuan (1983), and Peck and Gebers (1992). 
	Subjects 

	To be eligible for selection into the sample, drivers had to meet the following criteria: 
	(a) have a valid driver license at the beginning of the study period; (b) be alive as of 
	the May 1992 extraction date; and (c) possess a driver license that had not been expired for over 6 months as of the extraction date. 
	For each subject, information was collected on (a) age; (b) gender; (c) presence of a physical or mental (P&M) condition code on record; (d) presence of license restrictions on record; (e) number of total citations occurring during 1986-88; and (f) number of total accidents occurring during 1986-88.  The following displays descriptive statistics for the biographical and driver-record variables: 
	Variable 
	Variable 
	Variable 
	n = 152,931 

	Total accidents (1989-91) 
	Total accidents (1989-91) 

	X 
	X 
	0.1517 

	SD 
	SD 
	0.4138 

	Variance 
	Variance 
	0.1713 

	Total accidents (1986-88) 
	Total accidents (1986-88) 

	X 
	X 
	0.1706 

	SD 
	SD 
	0.4380 

	Variance 
	Variance 
	0.1918 

	Total citations (1986-88) 
	Total citations (1986-88) 

	X 
	X 
	0.6414 

	SD 
	SD 
	1.1964 

	Variance 
	Variance 
	1.4313 

	Age 
	Age 

	X 
	X 
	42.67 

	SD 
	SD 
	15.33 

	Variance 
	Variance 
	234.96 

	% Class 1/A or 2/B license 
	% Class 1/A or 2/B license 
	3.3 

	% one or more P&M conditions 
	% one or more P&M conditions 
	1.4 

	% one or more restrictions 
	% one or more restrictions 
	34.0 

	% male 
	% male 
	52.4 


	Multiple regression analysis was used to identify which combination of variables in the pool provided the most accurate equation for predicting the criterion measure, total accident frequency during 1989-91.  To be included in the analyses, drivers had to be licensed for the entire 1986-91 period. 
	Analysis 

	In the following sections, results are presented for two types of regression models: 
	(1) those using frequency data, where the dependent (criterion) variable represents the actual number of accident involvements, from 0 to K accidents, and (2) those using categorical data, where the accident criterion measure is a binary variable (equal to 0 if no accidents and 1 if one or more accidents). 
	RESULTS 
	Table 1 summarizes the results from the nonconcurrent 6-year (1986-88; 1989-91) ordinary least squares and weighted least squares multiple regression analyses.  All seven candidate variables were statistically significant predictors of accident involvement at the .10 level of probability, and, therefore, all were included in both regression equations.  The directions (positive or negative) of the regression coefficients indicate that increased accident involvement is associated with: 
	Frequency Data:  Ordinary Least Squares, Weighted Least Squares, Poisson, and Negative Binomial Regression Models 

	• 
	• 
	• 
	Increased prior citation frequency 

	• 
	• 
	Increased prior accident frequency 

	• 
	• 
	Having a commercial driver license (which is mostly held by high-mileage professional drivers) 

	• 
	• 
	Being young 

	• 
	• 
	Being male 

	• 
	• 
	Having one or more P&M conditions on record 

	• 
	• 
	Having one or more driver license restrictions on record 


	Table 1 
	Summary of Nonconcurrent 6-Year (1986-88; 1989-91) Multiple Regression Equation for Predicting Total Accidents Using Ordinary Least Squares and Weighted Least Squares Regression Models (n = 152,931) 
	Predictor variable 
	Predictor variable 
	Predictor variable 
	Ordinary least squares 
	Weighted least squares 

	Regression coefficient 
	Regression coefficient 
	Standard error 
	F 
	p 
	Regression coefficient 
	Standard error 
	F 
	p 

	Constant Prior total citations Prior total accidents License class Age Gender P&M indicator Restriction status 
	Constant Prior total citations Prior total accidents License class Age Gender P&M indicator Restriction status 
	0.211 0.005 1741.49 0.029 0.009 965.10 0.060 0.002 595.97 0.108 0.006 331.47 -0.001 0.000 247.50 -0.028 0.002 170.83 0.060 0.009 44.83 0.008 0.002 11.06 
	.000 .000 .000 .000 .000 .000 .000 .000 
	0.207 0.005 1875.48 .000 0.030 0.001 857.88 .000 0.059 0.003 489.40 .000 0.108 0.007 265.73 .000 -0.001 0.000 271.93 .000 -0.029 0.002 188.94 .000 0.061 0.010 40.38 .000 0.007 0.002 9.45 .002 

	TR
	F for the equation = 546.81 p = .000 2 R= .024 
	F for the equation = 503.33 p = .000 2 R= .023 


	. Only independent variables that contributed significantly (p < .10) to the prediction of the criterion measure were included in the models.  The criterion measure, total accidents during 1989-91, had a mean of 0.152 and standard deviation of 0.414. 
	Note

	The ordinary least squares regression equation takes the following form: Y  = A + B X + B X + … B X
	’
	1
	1
	2
	2
	K
	K 

	where Y  is the predicted value (either a positive or negative continuous value) on the dependent variable, A is the Y-intercept (the value of Y when all the X values are zero), the Xs represent the various independent variables (of which there are K), and the Bs are the regression coefficients assigned to each of the independent variables. Linear regression models are usually additive models (from which one can estimate increments in absolute risk) rather than multiplicative models (from which one can esti
	’

	The reader should note that the use of multiple regression involves meeting the following assumptions: (1) Independence–the Y observations are statistically independent of one another, (2) Linearity–the value of Y is a linear function of 
	’ 

	X, X, … X, (3) Homoscedasticity–the variance of Y is the same for any fixed 
	1
	2
	K
	’ 

	combination of X, X, … X, (4) Normality–the errors of prediction are normally distributed at all levels of Y, (5) Measurement infallibility–the variates are free of measurement error, and (6) Additivity–the effect terms (coefficients) of the parameters can be combined in an additive fashion to estimate Y. Failure to meet the above assumptions are potential threats to the accuracy of the parameter estimates. 
	1
	2
	K
	’

	As stated above, a fundamental assumption underlying unweighted least squares linear regression analysis is that all random errors have the same variance at different levels of the explanatory variable.  The homogeneity of residual error assumption is invariably violated with accident data because of the direct proportional relationship between the means and variances of the arrays, thereby introducing heteroscedasticity into the distribution of the residuals. 
	The weighted-least squares method of analysis is a modification of standard regression analysis procedures and is used when a regression model is to be fit to data for which the assumptions of variance homogeneity and/or independence, stated above, do not hold.  The least squares residual sum of squares is: 
	Σ(Y - B - BX - … BX). 
	i
	0
	1
	i
	m
	m
	2

	The weighted least squares residual sum of squares is: 
	Σw(Y - B - BX - … BX). 
	i
	i
	0
	1
	i
	m
	m
	2

	where wis the nonnegative weight assigned to an individual observation. Observations with small weights contribute less to the sum of squares and thus provide less influence to the estimation of parameters, and vice versa for observations with larger weights.  Therefore, it is logical to assign small weights to observations whose large error of prediction make them more unreliable, and likewise to assign larger weights to observations with smaller error of prediction.  It can, in fact, be shown that best li
	i 

	accident criterion are proportional to one another.  Although this assumption is not perfectly met, the amount of variance overdispersion is small. 
	In the present analysis, an ordinary least squares regression was run, and predicted scores and residuals were computed for all observations.  The sample was subdivided into quartiles on the basis of the distribution of the predicted scores.  The standard deviation of the residuals was calculated for each quartile.  The individual weights used in the follow-up weighted least squares regression were defined as the reciprocals of the standard deviations. 
	A comparison of the results from the unweighted and weighted regression analyses in Table 1 shows the effect of weighting.  The regression coefficients obtained by the two methods are remarkably similar, and all significance levels (p values) except one are identical through three digits.  That one exception (restriction status) differed slightly on the third digit (p = .000 versus .002). 
	As displayed in Table 1, Ractually declined slightly, from .024 using ordinary least squares to .023 using weighted least squares.  Since OLS has the property of maximizing the R, the quantity computed from the weighted least squares may be smaller than the OLS R. This can lead to an interpretive quandary when the discrepancy is larger than exists here–namely preferring models with the highest R, but acknowledging that, on theoretical grounds, a model with lower Ris preferred. 
	2 
	2
	2
	2
	2 

	As noted earlier, attempts to model accident frequencies using least squares regression techniques have been criticized in prior research (e.g., Boyer, Dionne, & Vanasse, 1990; Grogger, 1990; Davis, 1990).  Linear models often assume a normal distribution of data and allow for the prediction of negative values. 
	The above concern has led to the development and advocacy of the Poisson regression model.  The Poisson distribution lends itself to the modeling of either count or means data by virtue of its discrete, nonnegative integer distribution.  In the case of traffic accidents, the Poisson distribution gives 
	λ
	λ
	K 

	Pr (Y =K) =(e) 
	Pr (Y =K) =(e) 
	-λ

	K! 

	where Pr (Y = K) is the probability that the number of accidents, Y, will equal K, e = 2.718 (base of the natural logarithm), and λis the expected number of accidents. Given a vector of variables, λfor an individual driver can be estimated by the equation, 
	ln λ = XB 
	i 
	’
	i

	where X is a vector of variables (e.g., age, gender, prior citations) and B is a vector of estimable coefficients. 
	Poisson models are generally multiplicative.  Poisson regression models are not restricted to all of the assumptions noted above for multiple linear regression and are 
	specifically applicable to discrete count data where the probability of a given event (e.g., accidents) is relatively infrequent and can be approximated by a Poisson probability function. 
	The Poisson distribution, however, suffers from a potentially important limitation, namely that the dependent variable’s mean and variance are constrained to be equal. Data overdispersion (in which the variance is greater than the mean) or underdispersion (in which the variance is less than the mean) violates this constraint and leads to biased estimates of the significance of the regression coefficients.  If overdispersion is present, the negative binomial regression model is employed as an alternative. 
	The negative binomial model is an extension of the Poisson regression model which allows the variance of the process to differ from the mean.  The negative binomial model is 
	ln λ = B X + ε, 
	i
	i

	where exp (ε) has a gamma distribution with mean 0 and variance γ. 
	Table 2 presents the results from the Poisson and negative binomial regression analyses.  As stated above, overdispersion is a phenomenon that sometimes occurs in data that are arguably inappropriately modeled with a Poisson distribution.  If the estimate of dispersion (variance divided by the mean) is greater than 1, then the data 
	Table 2 
	Summary of Nonconcurrent 6-Year (1986-88; 1989-91) Multiple Regression Equation for Predicting Total Accidents Using Poisson and Negative Binomial Models (n = 152,931) 
	Predictor variable 
	Predictor variable 
	Predictor variable 
	Poisson regression 
	Negative binomial regression 

	Regression coefficient 
	Regression coefficient 
	Standard error 
	χ2 
	p 
	Regression coefficient 
	Standard error 
	χ2 
	p 

	Constant Prior total citations Prior total accidents License class Age Gender P&M indicator Restriction status 
	Constant Prior total citations Prior total accidents License class Age Gender P&M indicator Restriction status 
	-1.35 0.032 1842.69 0.112 0.004 725.35 0.274 0.012 545.11 0.458 0.027 282.07 -0.009 0.001 365.23 -0.218 0.014 240.36 0.279 0.045 37.88 0.049 0.015 11.20 
	.000 .000 .000 .000 .000 .000 .000 .000 
	-1.36 0.024 3095.26 0.114 0.003 1195.01 0.275 0.009 897.50 0.458 0.021 462.94 -0.009 0.000 612.68 -0.217 0.011 402.02 0.284 0.035 64.59 0.049 0.011 18.60 
	.000 .000 .000 .000 .000 .000 .000 .000 

	TR
	TH
	Artifact

	Deviance = 95,760 Pseudo-R2 = .03577 
	Deviance = 89,006 Pseudo-R2 = .03626 


	.  Only independent variables that contributed significantly (p < .10) to prediction of the criterion measure were included in the models. The criterion measure, total accidents during 1989-91, had a mean of 0.152 and standard deviation of 0.414. 
	Note

	may be overdispersed.  On the other hand, if the dispersion estimate is less than 1, then the data may be underdispersed.  If the value is within the typically-acceptable 
	0.8 to 1.2 range, the model can be considered to be correctly specified (SAS Institute Inc., 1993; Hilbe, 1994).  As displayed in Table 2, the dispersion statistic associated with the Poisson model is 1.08, which indicates that overdispersion may not be a problem with these data.  (For a discussion on tests for detecting overdispersion in Poisson regression models, the interested reader is referred to Dean and Lawless [1989].) 
	As can be seen, the results for the Poisson and negative binomial models are quite similar.  Since the Poisson model is a particular case of the negative binomial model, the difference in the deviance goodness-of-fit statistics for the two models can be compared to decide if there is any gain in “model fit” from using a negative binomial regression (the better fitting model having the lower deviance score).  The difference of 6,754 between the deviance statistics is significant (p < .000), indicating that t
	pseudo-R is .0358 for the Poisson model and .0363 for the negative binomial model. 
	2

	It should be noted that the results from the Poisson and negative binomial regressions parallel those from the linear models presented in Table 1, since the directions (i.e., signs) and p values of the regression coefficients are essentially identical.  In fact, the p values for the variables in Table 2 are identical to those for the OLS model through three digits.  (These pseudo-Rstatistics are usually not comparable to the “true” Rproduced by ordinary least squares and weighted least squares regression.) 
	2 
	2 

	Elasticities of independent variables were estimated from the Poisson parameters to determine the impact of these variables on accident frequency.  Elasticities can be roughly defined as the percentage change in the number of accidents resulting from a 1% change in the independent variable.  Elasticities for each individual observation were computed, and then an average elasticity was estimated for the sample. Because the elasticities of binary variables are not meaningful, Table 3 presents elasticities onl
	Table 3 
	Accident Frequency Elasticity Estimates 
	Independent variable 
	Independent variable 
	Independent variable 
	Elasticity (%) 

	Prior total citations 
	Prior total citations 
	0.072 

	Prior total accidents 
	Prior total accidents 
	0.047 

	Age 
	Age 
	-0.434 


	. Elasticity is defined as the percentage change in the average number of accidents that would be expected to result from a 1.000% change in the independent variable. 
	Note

	Table 3 provides some interesting insights.  For example, a 1.000% increase in the number of prior total citations is associated with a 0.072% increase in subsequent accident frequency.  Similarly, a 1.000% increase in prior total accidents is associated with a 0.047% increase in subsequent accident frequency.  This suggests that, at least for these variables, accident likelihood may be more sensitive to prior citations than to prior accidents. 
	To gain some understanding of the relative importance of the binary variables included in the Poisson regression model, a computation can be performed to provide an idea of the relative effect of these variables on mean accident frequency (λ). This 
	ij

	is accomplished using the coefficients in Table 2. For example, λcan be said to increase 58.1% (e/e) if a driver holds a commercial driver license. 
	ij 
	0.458
	0

	Table 4 presents the percentage change in associated with each binary 
	ij independent variable.  These percentage changes are somewhat analogous to the above elasticity coefficients except they represent increases in relative risk rather than additive increments per unit of change. 
	λ

	Table 4 
	Percentage Change in Mean Accident Frequency (λ) 
	ij

	Due to Binary Independent Variables 
	Independent variable 
	Independent variable 
	Independent variable 
	% change in λij 

	License class 
	License class 
	58.1 

	Restriction status 
	Restriction status 
	5.0 

	P&M status 
	P&M status 
	32.2 

	Gender 
	Gender 
	-19.6 


	Models used to estimate the probability of accidents from individual driver characteristics usually involve categorical data where the dependent variable is binary (0 for no accidents and 1 for one or more accidents) (Boyer, Dionne, & Vanasse, 1990). This section presents the results from the standard ordinary least squares linear probability model and the logistic regression model.  The predictor and criterion variables used in these models are the same as those used in the frequency-data models presented 
	Categorical Data:  Linear Probability and Logistic Regression Models 

	Table 5 presents results from the linear probability and logistic regression analyses. 
	Table 5 
	Summary of Nonconcurrent 6-Year (1986-88; 1989-91) Multiple Regression Equation for Predicting Total Accidents Using Linear Probability and Logistic Regression Models (n = 152,931) 
	Predictor variable 
	Predictor variable 
	Predictor variable 
	Linear 
	probability 
	regress
	ion 
	Logistic regr
	ession 

	Regression coefficient 
	Regression coefficient 
	Standard error 
	F 
	p 
	Regression coefficient 
	Standard error 
	Wald χ2 
	p 

	Constant Prior total citations Prior total accidents License class Age Gender P&M indicator Restriction status 
	Constant Prior total citations Prior total accidents License class Age Gender P&M indicator Restriction status 
	0.185 0.004 1975.43 .000 0.022 0.001 819.51 .000 0.041 0.002 409.41 .000 0.073 0.005 225.64 .000 -0.001 0.000 259.11 .000 -0.022 0.002 153.79 .000 0.037 0.007 25.67 .000 0.005 0.002 8.28 .004 
	-1.336 0.037 1325.36 .000 0.139 0.006 605.09 .000 0.287 0.015 356.65 .000 0.481 0.035 187.47 .000 -0.010 0.001 301.54 .000 -0.212 0.016 174.63 .000 0.269 0.058 21.94 .000 0.047 0.017 7.74 .005 

	TR
	F for the equation = 445.57 p = .000 R2 = .020 
	-2 Log L for intercept only = 120045.03 -2 Log L for intercept and covariates = 117348.76 Chi-square for covariates = 3056.82, df = 7, p = .000 


	.  Only independent variables that contributed significantly (p < .10) to prediction of the criterion measure were included in the models.  The criterion measure, total accidents during 198991, had a mean of 0.152 and standard deviation of 0.414. 
	Note
	-

	The standard ordinary least squares linear probability model is defined as 
	Y  = A + B X + B X + … BKXK 
	’ 
	i
	1
	1
	2
	2

	where the Xs represent the independent variables, and the Bs are the regression coefficients assigned to the independent variables. The dependent variable Y is dichotomous:  Y = 1 if the i-th individual had one or more accidents during 1989-91, 
	’ 
	’ 
	i 

	Y 
	Y 
	’ 

	 = 0 otherwise.  The expected value of Y can be interpreted as the probability that Y = 1 or more. 
	i

	The results from the linear probability model indicate that the significant predictor variables explain part of the differences in accident probabilities between drivers. For example, each additional total citation during 1986-88 increases the probability of being involved in an accident in 1989-91 by 2.2 percentage points; an additional accident during 1986-88 increases the probability of being involved in a subsequent accident by 4.1%.  Being female reduces the probability of accident involvement by 
	2.2 percentage points. 
	The parameter estimates from the linear probability model are proportionally similar to the ordinary least squares estimates presented in Table 1.  The shrinkage in Rfrom .024 in the ordinary least squares model to .020 in the linear probability model is attributable to the loss of information resulting from using a binary rather than continuous accident criterion measure. 
	2 

	The linear regression model has several potential limitations when the dependent variable is binary (Maddala, 1991).  First, there is a serious heteroscedasticity problem, meaning that the estimates of the prediction errors are not normally distributed.  Secondly, the predicted value could possibly be outside the range of 0 to 1 for certain values of the predictor variables. This is particularly  troublesome if the expected value is interpreted as a probability.  For this application, a non-linear model suc
	Because logistic regression models are nonlinear, the equations used to describe the outcomes are more complex than those for OLS multiple regression models.  The outcome variable, Y is the probability of having one outcome or another (0 vs. 1 or more accidents) based on a nonlinear function of the best linear combination of predictors.  For two possible outcomes: 
	’ 
	i 

	Y = 1 + e
	’
	i
	e
	U 
	U 

	where Y  is the estimated probability that the ith case (i = 1, 2, …n) is in one of the categories and U is the linear regression equation: 
	’ 
	i

	U = A + B X + B X + … + B X
	1
	1
	2
	2
	K
	K 

	with constant A, coefficients B, and predictor, X for K predictors (j = 1, 2, … K). 
	j
	j

	This linear regression equation creates the logit, or log of the odds ratio: 
	ln = A + ∑Bj X ij 


	) 
	) 
	(  
	Y
	’

	1 - Y
	’ 

	That is, the linear regression equation is the natural log of the probability of having one outcome (accident-free) divided by the probability of having the other outcome (accident-involved).  The procedure for estimating coefficients is maximum likelihood, and the goal is to find the best linear combination of predictors to maximize the likelihood of obtaining the observed outcome frequencies (Hosmer and Lemeshow, 1989). 
	Again, the signs (positive or negative) and p values of the logistic regression coefficients in Table 5 are similar to those of the prior analyses. 
	Table 6 presents the odds ratios obtained from the logistic regression equation.  The odds ratio as applied here refers to the relative odds of being accident-involved, as a function of a predicted driver-record category.  For example, the odds ratios in Table 6 indicate that: 
	• 
	• 
	• 
	Drivers with two prior citations are 1.32 times as likely to have a subsequent accident than are drivers with no prior citations. 

	• 
	• 
	Drivers with two prior accidents are 1.78 times as likely to have a subsequent accident than are drivers with no prior accidents. 


	Table 6 
	Odds Ratios for Prediction of Total Accident Involvement from Logistic Regression Analysis of 6-Year Nonconcurrent Data (1986-88; 1989-91) (n = 152,931) 
	Predictor variable 
	Odds-ratio 
	Prior total citations (1986-88) 2 1.32 4 1.75 6 2.31 
	Prior total accidents (1986-88) 2 1.78 4 3.15 
	Age (years) 
	5 0.95 10 0.91 15 0.86 License class 1.62 Driver license restriction 1.05 Physical and mental condition 1.31 Gender 1.24 
	• 
	• 
	• 
	The risk of a subsequent accident is 1.62 times higher for commercial drivers than it is for non-commercial drivers. 

	• 
	• 
	The risk of a subsequent accident is 1.24 times higher for men drivers than it is for women drivers. 


	So that the reader may get an idea about the order of magnitude of the accident estimates generated from the Poisson, OLS, and weighted least squares models, values of predicted accident rates are displayed in Table 7 for selected values of the predictor variables.  While the values are arbitrary, they are within the range of values for the predictor variables. All models produce very similar estimates of accident risk for the portrayed driver groups.  The Poisson and negative binomial regression models do 
	EXPLORATORY MULTIVARIABLE ANALYSES 
	Table 7 
	Predicted Frequency of Accidents from Multiple Regression Equations at Various Values of the Predictor Variables 
	Independe nt variable combinatio n 
	Independe nt variable combinatio n 
	Independe nt variable combinatio n 
	Predictor variable value 
	Y ’ 
	λ ’ 

	Sex 
	Sex 
	Age 
	License class 
	Restrictio n status 
	P & M status 
	1986-88 total citations 
	1986-88 total accidents 
	Ordinary least squares estimatea 
	Weighted least squares estimateb 
	Poisson estimatec 
	Negative binomial estimated 


	A 
	A 
	A 
	1.48 
	45.67 
	0.033 
	0.34 
	0.01 
	0.64 
	0.17 
	0.1513 
	0.1481 
	0.1422 
	0.1421 

	B 
	B 
	1 
	35 
	1 
	1 
	0 
	5 
	2 
	0.5228 
	0.5121 
	0.7531 
	0.7601 

	C 
	C 
	1 
	45 
	1 
	0 
	0 
	6 
	2 
	0.5328 
	0.5291 
	0.7299 
	0.7385 

	D 
	D 
	1 
	59 
	0 
	1 
	1 
	3 
	1 
	0.3289 
	0.3396 
	0.3053 
	0.3082 

	E 
	E 
	1 
	60 
	0 
	1 
	0 
	2 
	0 
	0.1788 
	0.1856 
	0.1556 
	0.1558 

	F 
	F 
	1 
	70 
	0 
	0 
	1 
	0 
	0 
	0.1607 
	0.1653 
	0.1425 
	0.1428 

	G 
	G 
	2 
	29 
	0 
	0 
	0 
	3 
	1 
	0.2679 
	0.2699 
	0.2346 
	0.2358 

	H 
	H 
	2 
	30 
	0 
	1 
	0 
	0 
	0 
	0.1268 
	0.1200 
	0.1327 
	0.1324 

	I 
	I 
	2 
	35 
	1 
	1 
	0 
	5 
	2 
	0.4946 
	0.4829 
	0.6058 
	0.6118 


	.  For license class, 0 = Class 3/C or motorcycle; 1 = Class 1/A or 2/B.  For restriction status, 0 = no license restriction on record; 1 = one or more license restrictions on record.  For P&M status, 0 = no P&M condition on record; 1 = one or more P&M conditions on record. For sex, 1 = male; 2 = female.  Values in row "A" represent sample averages. 
	Note

	Equation for ordinary least squares estimate: ’ 
	a

	Y = 0.21060199 + (0.10759473 x License class) + (0.00769221 x Restriction status) + (0.05990415 x P&M status) + (-0.00116449 x Age) + (0.02933590 x Total citations) + (0.0596493 x Total accidents) + (-0.02827030 x Sex) 
	Equation for weighted least squares regression: ’ 
	b

	Y = 0.204585 + (0.092161 x License class) + (0.006735 x Restriction status) + (0.066815 x P&M status) + (-0.001100 x Age) + (0.034696 x Total citations) + (0.051395 x Total  accidents) + (-0.029154 x Sex) 
	Equation for Poisson estimate: ’ 
	c
	λ 

	= exp [-1.3517 + (0.4583 x License class) + (0.0491 x Restriction status) + (0.2789 x P&M status) + (-0.0094 x Age) + (0.1119 x Total citations) + (0.2739 x Total accidents) + (-0.2176 x Sex)] 
	Equation for negative binomial estimate: ’ 
	d
	λ 

	= exp [-1.3550 + (0.4582 x License class) + (0.0488 x Restriction status) + (0.2840 x P&M status) + (-0.0094 x Age) + (0.1139 x Total citations) + (0.2751 x Total accidents) + (-0.2170 x Sex)] 
	13 
	Two measures of performance were used to compare the adequacy of the different regression techniques.  The first measure selects the group of drivers with the most prior total accidents in 1986-88, another group with the most prior total citations in 1986-88, and five more groups estimated from the predicted scores in the multiple regression models as having the highest accident potential.  Next, a count was made of the number of subsequent accidents in which the drivers of these seven groups were involved 
	Classification and Prediction Accuracy 
	’ 

	The second approach evaluated the accuracy of the models in terms of predicting the subsequent accident status of the subjects (accident-involved versus accident-free). The false-negative and false-positive rates produced by the models were compared at a variety of “cut points” in order to evaluate the respective sensitivity and specificity of the equations in predicting subsequent accident involvement. 
	The performance of each of the seven schemes (prior citations, prior accidents, and the five regression models) is presented in Table 8. Several conclusions emerge from these results.  First, to identify drivers with high accident potential, one can do better than to use either prior citations or prior accidents alone.  Second, no one multiple regression procedure substantially outperforms the others. Third, the larger the pool of drivers that are considered, the lower is the “yield.”  For example, among dr
	0.27 accidents per driver over the subsequent 3-year period; and drivers ranking between 20,000 and 120,000 have 0.16 accidents per driver over the 3-years. 
	Table 8 
	Number of Drivers Identified in Each 3-Year (1989-91) Accident-Risk Strata by Each Model 
	Model 
	Model 
	Model 
	Drivers estimated by model to be in: 

	Top 1,000 
	Top 1,000 
	Next 4,000 
	Next 5,000 
	Next 10,000 
	Next 100,000 
	Total 

	Prior accidents (1986-88) Prior citations (1986-88) Ordinary least squares Poisson Negative binomial Linear probability Logistic 
	Prior accidents (1986-88) Prior citations (1986-88) Ordinary least squares Poisson Negative binomial Linear probability Logistic 
	406 377 473 471 469 467 463 
	986 1,234 2,048 14,258 1,210 1,326 2,260 14,124 1,380 1,385 2,317 14,783 1,388 1,345 2,307 14,764 1,390 1,343 2,310 14,770 1,381 1,389 2,338 14,753 1,380 1,372 2,311 14,769 
	18,932 19,297 20,338 20,275 20,282 20,328 20,295 


	.  Entries for prior accidents and citations represent the numbers of drivers having the highest counts of incidents during 1986-88. 
	Note

	The following section provides a comparison of the models in terms of “hits,” “false alarms,” and “misses” in estimating individual accident involvement. 
	.  Multiple regression equations can be used to predict whether or not a driver will be accident-involved in a subsequent period of time.  The accuracy of the classification can be summarized in Table 9. 
	Predicting individual accident involvement

	Table 9 
	Contingency Table of Predicted vs. Actual Outcomes 
	Actual state 
	Actual state 
	Actual state 
	Predicted state 

	Accident-involved 
	Accident-involved 
	Accident-free 

	Accident-involved Accident-free 
	Accident-involved Accident-free 
	a (true positive) b (false negative) c (false positive) d (true negative) 


	This classification table is obtained by accumulating the number of observations for each category.  Sensitivity is the proportion of the event (i.e., accident-involved) outcomes that were predicted to be accident involved.  Specificity is the proportion of no event (i.e., accident-free) outcomes that were predicted to be no event.  The false-positive rate is the proportion of predicted accident outcomes that were observed as no accidents. The false-negative rate is the proportion of predicted no accident o
	With perfect prediction, all drivers would be counted in cells a and d, and none would be counted in cells b and c. Drivers counted in cell c are false positives.  They are predicted to be accident-involved, but are actually accident-free.  Drivers counted in cell b are false negatives.  They are predicted to be accident-free, but are actually accident-involved.  The desired outcome is to minimize the proportion of drivers in cells b and c and to make fewer errors than would be made in classifying drivers w
	To illustrate the accuracy of the regression equations in predicting the future accident expectancy of individual drivers, a series of four-fold contingency tables were generated displaying the relationship between each individual’s predicted and actual accident-involvement frequency. 
	Tables 10-13 were constructed, each differing in the predicted accident score used for predicting whether a given driver will have an accident.  These cutoff scores were selected by generating predicted accident scores from the different equations and then iteratively tabulating the sample using different scores of the predicted values until nearly equal marginal proportions were obtained.  The tables summarize the results for the ordinary least squares, Poisson, linear probability, and logistic regression 
	Tables 10-13 were constructed, each differing in the predicted accident score used for predicting whether a given driver will have an accident.  These cutoff scores were selected by generating predicted accident scores from the different equations and then iteratively tabulating the sample using different scores of the predicted values until nearly equal marginal proportions were obtained.  The tables summarize the results for the ordinary least squares, Poisson, linear probability, and logistic regression 
	procedures.  The cutoff score used in each analysis also produced approximately equal numbers of false-negative and false-positive predictions, as would be expected from the equality of the marginal distributions.  The use of equal marginals assigns equal weights to both types of errors and tends to maximize the overall accuracy of classification as represented by the phi coefficient. 

	Table 10 
	Predicted 3-Year Accident-Involvement Frequency and Percentage Using Ordinary Least Squares Regression 
	Actual accident status 
	Actual accident status 
	Actual accident status 
	Predicted accident status 
	Total 

	Accident-involved 
	Accident-involved 
	Accident-free 

	Accident-involved Accident-free Total Percent correctly classified 
	Accident-involved Accident-free Total Percent correctly classified 
	4,609 (3.01%) 15,762 (10.31%) 20,371 (13.32%) 22.63% 
	15,766 (10.31%) 116,794 (76.37%) 132,510 (86.68%) 88.11% 
	20,375 (13.32%) 132,556 (86.68%) 152,931 (100.00%) 


	.A predicted accident rate cutoff of 0.216 was used to equalize marginals.  The odds ratio is 2.2, and the phi coefficient is .11. 
	Note

	Table 11 
	Predicted 3-Year Accident-Involvement Frequency and Percentage Using Poisson Regression 
	Actual accident status 
	Actual accident status 
	Actual accident status 
	Predicted accident status 
	Total 

	Accident-involved 
	Accident-involved 
	Accident-free 

	Accident-involved Accident-free Total Percent correctly classified 
	Accident-involved Accident-free Total Percent correctly classified 
	4,551 (2.98%) 15,787 (10.32%) 20,338 (13.30%) 22.38% 
	15,824 (10.35%) 116,769 (76.35%) 132,593 (86.70%) 88.07% 
	20,375 (13.32%) 132,556 (86.68%) 152,931 (100.00%) 


	.A predicted accident rate cutoff of 0.200 was used to equalize marginals.  The odds ratio is 2.1, and the phi coefficient is .10. 
	Note

	Table 12 
	Predicted 3-Year Accident-Involvement Frequency and Percentage Using Linear Probability Regression 
	Actual accident status 
	Actual accident status 
	Actual accident status 
	Predicted accident status 
	Total 

	Accident-involved 
	Accident-involved 
	Accident-free 

	Accident-involved Accident-free Total Percent correctly classified 
	Accident-involved Accident-free Total Percent correctly classified 
	4,587 (3.00%) 15,709 (10.27%) 20,296 (13.27%) 22.60% 
	15,788 (10.32%) 116,794 (76.41%) 132,635 (86.73%) 88.10% 
	20,375 (13.32%) 132,556 (86.68%) 152,931 (100.00%) 


	.A predicted accident rate cutoff of 0.182 was used to equalize marginals.  The odds ratio is 2.2, and the phi coefficient is .11. 
	Note

	Table 13 
	Predicted 3-Year Accident-Involvement Frequency and Percentage Using Logistic Regression 
	Actual accident status 
	Actual accident status 
	Actual accident status 
	Predicted accident status 
	Total 

	Accident-involved 
	Accident-involved 
	Accident-free 

	Accident-involved Accident-free Total Percent correctly classified 
	Accident-involved Accident-free Total Percent correctly classified 
	4,576 (2.99%) 15,796 (10.33%) 20,372 (13.32%) 22.46% 
	15,799 (10.33%) 116,760 (76.35%) 132,559 (86.68%) 88.08% 
	20,375 (13.32%) 132,556 (86.68%) 152,931 (100.00%) 


	.A predicted accident rate cutoff of 0.175 was used to equalize marginals.  The odds ratio is 2.1, and the phi coefficient is .11. 
	Note

	Using Table 10 as an example, this table shows a statistically significant association (p < 0.001) between predicted and actual accident involvement.  Persons predicted to have accidents are approximately 2 times more likely to have accidents than 
	are those predicted to be accident-free (3.0 13.3 = 22.6% vs. 10.3 86.7 = 11.9%). However, the equation failed to correctly predict the majority of accident-involved drivers, as evidenced by the low true-positive rate of 22.6%.  Although the false-negative rate (10.3 86.7 = 11.9%) appears low, this percentage of misclassification represents the majority of the 13.3% of the total sample who were truly accident involved. 
	The phi coefficient and odds ratio, shown at the bottom of each table, are commonly used indices for quantifying the degree of association in contingency tables.  The phi coefficient is simply the Pearson correlation coefficient between the actual and predicted accident-status categories.  The odds ratio refers to the relative odds of being accident-involved as a function of a predicted accident category.  More 
	specifically, the odds ratio is equal to (P P )  (PP), where P , P, P , and P
	b 
	d
	b
	d 

	ac ac 
	represent the grand percentages in the respective cells. 
	In Table 10, the odds of predicted accident-involved subjects actually having an accident as opposed to not actually having an accident, are (3.0% 10.3%) = 0.2919. The same odds for the predicted accident-free group are (10.3% 76.4%) = 0.1350. The ratio of these two odds (i.e., the odds ratio) is 2.2.  If the odds of having an 
	accident did not vary as a function of the sample’s predicted score, the odds ratio would be 1.  This would indicate no relationship between the categories.  An odds ratio exceeding 1 indicates some relationship between the categories. However, the index has no upper limit and is not a measure of correlation as is the phi coefficient.  The fact that the odds ratio and phi coefficient are of modest size in Table 10 indicates that the degree of individual predictive accuracy is low.  This is demonstrated by t
	As demonstrated in Tables 10-13, all four multiple regression techniques are almost identical in accuracy of individual prediction.  For example, the percent correctly classified as accident-involved ranges between 22.6% for ordinary least squares regression and 22.4% for Poisson regression.  Although not shown here, additional contingency tables were produced for the four regression techniques using cutoff-score values that would predict accident involvement for all drivers with accident expectancies of fi
	In an attempt to investigate the dependence of the preceding results on sample size, an additional study was performed by selecting a 10% (n = 15,348) random sample of the drivers used in the above analyses. For purposes of this additional analysis, equations were produced for the ordinary least squares, Poisson, and logistic regression techniques. 
	Sampling Validation Study 

	Table 14 displays descriptive statistics for the biographical and driver record variables for the total sample and the 10% sample. 
	Table 14 
	Descriptive Statistics for the Total Sample and the 10% Sample 
	Variable 
	Variable 
	Variable 
	Total sample (n = 152,931) 
	10% sample (n = 15,348) 

	Total accidents (1989-91) 
	Total accidents (1989-91) 

	X 
	X 
	0.1517 
	0.1533 

	SD 
	SD 
	0.4138 
	0.4152 

	Variance Total accidents (1986-88) 
	Variance Total accidents (1986-88) 
	0.1713 
	0.1724 

	X 
	X 
	0.1706 
	0.1680 

	SD 
	SD 
	0.4380 
	0.4353 

	Variance Total citations 
	Variance Total citations 
	0.1918 
	0.1895 

	X 
	X 
	0.6414 
	0.6409 

	SD 
	SD 
	1.1964 
	1.1859 

	Variance Age 
	Variance Age 
	1.4313 
	1.4064 

	X 
	X 
	45.67 
	45.44 

	SD 
	SD 
	15.33 
	15.17 

	Variance 
	Variance 
	234.96 
	230.26 

	% class 1/A or 2/B 
	% class 1/A or 2/B 
	3.3 
	3.4 

	% one or more P&M conditions 
	% one or more P&M conditions 
	1.4 
	1.4 

	% one or more restrictions 
	% one or more restrictions 
	34.0 
	33.8 

	% male 
	% male 
	52.4 
	52.6 


	In comparing the samples, it is evident that differences between the total and 10% samples on the biographical and driver record variables are very small (less than 4% in absolute value). 
	Table 15 presents a summary of the regression equations for the reduced sample study.  As was the case with the previous analyses, subsequent total accidents was associated with: 
	• 
	• 
	• 
	Increased prior citation frequency 

	• 
	• 
	Increased prior accident frequency 

	• 
	• 
	Having a commercial driver license 

	• 
	• 
	Being young 

	• 
	• 
	Being male 

	• 
	• 
	Having one or more P&M conditions on record 

	• 
	• 
	Having one or more driver license restrictions on record 


	Note from Table 15 that the p values for the first six coefficients are identical through three digits.  Only the p values for P&M and restriction status differ. 
	Table 15 
	Summary of Nonconcurrent 6-Year (1986-88; 1989-91) Multiple Regression Equation for Predicting Total Accidents within the 10% Sample Using Ordinary Least Squares, Poisson, and Logistic Regression Models (n = 15,348) 
	Predictor Ordinary least squares regression Poisson regression Logistic regression variable Regression coefficient Standard error F p Regressio n coefficient Standard error χ2 p Regression coefficient Standard error Wald χ2 p Constant 0.230 0.016 207.09 .000 -1.245 0.099 158.20 .000 -1.241 0.115 115.62 .000 Prior total citations 0.026 0.003 75.15 .000 0.1023 0.014 56.07 .000 0.133 0.018 54.60 .000 Prior total accidents 0.062 0.008 63.84 .000 0.287 0.037 59.36 .000 0.319 0.048 44.60 .000 License class 0.126 
	Table 16 
	Number of Drivers Identified in Each 3-Year (1989-91) Accident Risk Strata by Each Model for the 10% Sample 
	Model 
	Model 
	Model 
	Drivers estimated by model to be in: 

	Top 500 
	Top 500 
	Next 500 
	Next 1,000 
	Next 4,000 
	Next 5,000 
	Total 

	Prior accidents (1986-88) Prior citations (1986-88) Ordinary least squares Poisson Logistic 
	Prior accidents (1986-88) Prior citations (1986-88) Ordinary least squares Poisson Logistic 
	140 145 177 177 179 
	124 215 657 639 132 223 729 621 141 230 774 621 147 230 750 644 148 226 768 623 
	1,775 1,850 1,943 1,948 1,944 


	.  Entries for prior accidents and citations represent the numbers of drivers having the highest counts of incidents during 1986-88. 
	Note

	Table 17 
	Predicted 3-Year Accident Involvement Using Ordinary Least Squares Regression for the 10% Sample 
	Actual accident status 
	Actual accident status 
	Actual accident status 
	Predicted accident status 
	Total 

	Accident-involved 
	Accident-involved 
	Accident-free 

	Accident-involved Accident-free Total Percent correctly classified 
	Accident-involved Accident-free Total Percent correctly classified 
	461 (3.00%) 1,601 (10.43%) 2,062 (13.43%) 22.36% 
	1,601 (10.43%) 11,685 (76.13%) 13,286 (86.57%) 87.95% 
	2,062 (13.43%) 13,286 (86.57%) 15,348 (100.00%) 


	.  A predicted accident rate cutoff of 0.218 was used to equalize marginals.  The odds ratio is 2.1, and the phi coefficient is .10. 
	Note

	Table 18 
	Predicted 3-Year Accident Involvement Using Poisson Regression for the 10% Sample 
	Actual accident status 
	Actual accident status 
	Actual accident status 
	Predicted accident status 
	Total 

	Accident-involved 
	Accident-involved 
	Accident-free 

	Accident-involved Accident-free Total Percent correctly classified 
	Accident-involved Accident-free Total Percent correctly classified 
	464 (3.02%) 1,599 (10.42%) 2,063 (13.44%) 22.49% 
	1,598 (10.41%) 11,687 (76.15%) 13,285 (86.56%) 76.15% 
	2,062 (13.43%) 13,286 (86.57%) 15,348 (100.00%) 


	.  A predicted accident rate cutoff of 0.204 was used to equalize marginals.  The odds ratio is 2.1, and the phi coefficient is .11. 
	Note

	Table 19 
	Predicted 3-Year Accident Involvement Using Logistic Regression for the 10% Sample 
	Actual accident status 
	Actual accident status 
	Actual accident status 
	Predicted accident status 
	Total 

	Accident-involved 
	Accident-involved 
	Accident-free 

	Accident-involved Accident-free Total Percent correctly classified 
	Accident-involved Accident-free Total Percent correctly classified 
	462 (3.01%) 1,596 (10.40%) 2,058 (13.41%) 22.45% 
	1,600 (10.42%) 11,690 (76.17%) 13,290 (86.59%) 7.96% 
	2,062 (13.43%) 13,286 (86.57%) 15,348 (100.00%) 


	.  A predicted accident rate cutoff of 0.178 was used to equalize marginals.  The odds ratio is 2.1, and the phi coefficient is .10. 
	Note

	As was the case with the previous analyses, the regression methods produced similar results in terms of driver selection and percent correctly classified into accident-involved and accident-free categories.  The results of this validation analysis closely parallel the previous findings, providing substantiation for the robustness and reliability of the findings with sample sizes much smaller than the original N. 
	DISCUSSION 
	The results of the present analyses are consistent with those of prior research (e.g., Gebers & Peck, 1994; Peck & Gebers, 1992; Peck & Kuan, 1983).  For example, 
	it was shown in all the models that increased accident involvement was associated with increased prior citation and accident frequencies, possessing a commercial driver license, being young, being male, having a medical condition on record, and having a driver license restriction on record. 
	Any generalization about driving performance from the present analyses is limited by the absence of exposure data (e.g., miles driven) and territorial data (e.g., driver record by ZIP Code and U.S. census variables).  Exposure and territorial variables not available from the driver record file have been collected and will be analyzed in the next report. 
	Results presented in this paper indicate that with these data, the use of different regression techniques do not lead to any greater increase in individual accident prediction beyond that obtained through application of ordinary least squares regression.  It therefore appears safe to employ OLS multiple regression techniques on driver accident-count distributions of the type represented by California driver records, at least when Ns are extremely large.  This conclusion is consistent with those contained in
	In future reports, the statistical interaction between predictor variables (e.g., how the relationship between subsequent accidents and age varies as a function of the prior number of citations) will also be examined.  The subsequent analyses will also include the following: 
	• 
	• 
	• 
	Regressions on concurrent and nonconcurrent 3, 6, 9, 14, and 20-year samples. 

	• 
	• 
	Regressions using accident sub-type criteria, such as single-vehicle accidents, fatal/injury accidents, police-reported accidents, and culpable accidents. 

	• 
	• 
	Regressions using an expanded set of predictors that will include individual violation types (e.g., speeding, DUI, following too close) and additional driver licensing variables (e.g., type of restriction, limited-term license, vision referral, and number of months the driver license is suspended or revoked). 


	The objective of these future studies will be to provide driver license officials, epidemiologists, traffic safety researchers, and organizations involved in risk management and assessment with actuarial data on driver accident risk profiles. 
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